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ABSTRACT 
 

Successful fisheries management is dependent upon the collection of data from fishing 

activities. Fishing data supports and improves stock assessments to ensure that catch limits are 

sustainable in the long term. Electronic monitoring (EM) has been shown to be an effective tool 

to meet fisheries monitoring objectives, particularly in compliance-based programs. However, 

while current systems allow for an alternate method for acquiring data, these collections require 

manual review and analysis to extract the meaningful catch accounting information. This can be 

a costly and time-consuming effort. Additionally, challenges in deploying EM camera systems 

arise due to complex hardware and software operational requirements, varied boat sizes, designs, 

and gear types, and the damage that can be done to electronics when exposed to harsh ocean 

environments. The EM Innovation (EMI) project, supported by the Fisheries Monitoring and 

Analysis Division (FMA) of the Alaska Fisheries Science Center (AFSC), aims to address these 

issues by researching and piloting cost-effective and durable machine learning and computer 

vision (CV) advancements for EM camera system deployments, with the goal of providing near-

real time, automated, catch accounting and reporting. 

EMI research consists of the development and deployment of camera systems for 

acquiring imagery and the development and integration of automated CV machine learning 

algorithms and applications. The purpose of these systems is to detect and identify catch events 

from fishing imagery and to classify those detection to species or larger taxonomic groups. Once 

these detections are made, further data analysis about the catch event can be obtained, such as 

length estimation and count information. Algorithms have different requirements based on the 

detection types and the fisheries environment involved. EMI identified multiple fisheries 

applications where CV can be of use. These include 1) automated species detection, 

identification, and length estimation of fish as it is caught at the rail of fixed gear (longline) 

vessels; 2) species identification of fish images collected in controlled environments; 3) 

detection, count, and length estimation of Pacific halibut (Hippoglossus stenolepis) bycatch; and 

4) detection, count, and distinction of salmon from processing plant belts containing multiple 

species of fish. Additional algorithm functionality for the detection and monitoring of crew 

member activity on vessel decks is also presented.  
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Research is conducted through an iterative development lifecycle with four principal 

areas. These include the following: 1) the development and deployment of the camera systems 

for data collection; 2) the annotation and cataloging of the collected data; 3) the development and 

training of the algorithms based on the annotated data; and 4) the analysis and interpretation of 

the algorithm results. Each cycle has an associated output, these being: an EM camera system a 

set of algorithms or a combination of both. Results have been very promising and are presented 

in this Processed Report for each functional stream. By leveraging these latest developments in 

computer vision, cost-effective and timely extraction of scientific data from images will provide 

greater certainty for resource management and will support sustainable fishing practices.  
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1.   INTRODUCTION 
 

Approximately 58% of U.S. seafood was landed in Alaska in 2018 (NMFS 2020), 

making the federally managed commercial fisheries off Alaska one of the largest in the United 

States. The North Pacific Observer Program (Observer Program), administered by the Alaska 

Fisheries Science Center’s (AFSC) Fisheries Monitoring and Analysis Division (FMA), plays a 

vital role in the conservation and management of these Alaska groundfish and halibut fisheries. 

FMA monitors groundfish and halibut fishing activities in the Federal fisheries off Alaska and 

conducts research associated with sampling commercial fishery catches, estimation of catch and 

bycatch mortality, and analysis of fishery-dependent data. FMA is responsible for training, 

briefing, debriefing, and oversight of observers who collect catch data onboard fishing vessels 

and at onshore processing plants. Successful fisheries management is dependent upon the 

collection of data from these fishing activities. Fishing data, such as the number of fish that are 

caught, the fishing effort (the number of hours or days spent fishing), and bycatch information, 

support and improve stock assessments and ensure that catch limits are sustainable in the long 

term.  

Data are traditionally collected by at-sea and shoreside observers, who collect data on 

what fishermen land and discard. More recently, FMA has invested in alternative data collecting 

methods for which the deployment of observers is difficult or restrictive. Electronic monitoring 

(EM) is one such data collection method. EM technologies are being used in several applications 

in the North Pacific and elsewhere. In the North Pacific, video technology is used for two 

purposes: 1) estimating catch and discard for fisheries management and 2) monitoring for 

compliance with regulations. 

The Observer Program Annual Deployment Plan (ADP) dictates when and where to 

deploy observers based on a scientifically defensible deployment plan reviewed annually by the 

North Pacific Fishery Management Council. Since 2018, the deployment of EM systems has 

been included in the ADP as a monitoring option for longline gear, and in 2019 was extended to 

include EM as a monitoring option for pot gear. 
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While EM holds the potential to make data collection timelier, more accurate, and more 

cost-efficient, there are some drawbacks and limitations which need to be overcome for this 

potential to be realized. Some of the real-world practical challenges include complex hardware 

and software, varied boat sizes and designs, and the damage to electronics when exposed to 

saltwater and pounding waves. Additionally, the video collected requires human review to 

extract the data needed for quota management and stock assessments which is a costly and time 

consuming effort. The EM Innovation (EMI) project, under FMA, aims to address these issues 

by researching and piloting cost-effective and durable methods for collecting and automatically 

processing the data from EM system deployments. This automated processing can be achieved 

using computer vision (CV). 

CV is a field of artificial intelligence (AI) that trains computers to interpret and 

understand the visual world. Using digital images from cameras and videos and deep learning 

models, machines can accurately identify and classify objects. For fishery EM, CV algorithms 

and models are trained using data collected from EM camera systems. Once trained these models 

can be used to detect fish and fishing events within EM video data. Further deep learning models 

can then be applied to make determinations based on these detections, such as identifying the 

fish to species or determining the length of the fish.  

The accuracy and dependability of the results of CV algorithms and models is dependent 

on the training input provided. For the EMI project, specific EM training imagery was needed 

based on the automation required. For example, longline imagery is needed for training the 

longline detection algorithms, while multiple images of various fish species in various poses are 

needed for the identification models. Camera specific training imagery is also needed, such as 

stereo imagery for determining lengths and multispectral imagery for determining training 

features. EMI conducts the research, development, and deployment of both the camera systems 

needed for the collection of training data as well as the CV algorithms and models for fish 

detection, fish tracking from one frame to another (in some cases the tracking of multiple fish in 

the frame at the same time), fish species classification, and fish length estimation. 

The EMI project aims to provide integrated CV EM camera systems and applications for 

a more cost-effective and timelier method for collecting and providing analyzed data for catch 

accounting purposes. Any realized cost savings could allow for increasing coverage among 
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vessels for the same total costs. The advances made in this research have the potential to benefit 

similar EM programs that require CV, as the CV algorithms and models can be re-trained for 

new datasets based on training imagery collected from other camera systems. 

This Processed Report aims to detail the research methods and results for camera systems 

and algorithm development. The work conducted by the EMI falls under Goal 3 of the NOAA 

Fisheries Strategic Plan (NOAA 2019): Improve organizational excellence and regulatory 

efficiency through institutionalizing the use of innovative technologies. Supporting the 

development, leveraging, and use of powerful technologies (e.g., artificial intelligence and 

machine learning), digital platforms and electronic monitoring, for conducting surveys, 

enhancing, and improving the accuracy of observing systems, and collecting and sharing data in 

cost-effective, transparent, and real-time approaches.  

 

  2.   METHODS 
 

The objective of EMI is to provide EM camera systems and computer vision algorithms 

to collect and analyze fisheries data for North Pacific commercial fisheries. The basic functions 

of the algorithms are to detect and identify catch events from fishing imagery and classify that 

detection to species or a larger taxonomic group. Further analysis tasks include collecting length 

estimations and counts. This automated collection and analysis technology can be applied to the 

hook and line, trawl, and pot fisheries. While the functions of the algorithms are fundamentally 

the same (detection, classification, tracking, and length estimation) they have different 

requirements based on the detection types and fisheries environment. For instance, detecting and 

analyzing a fish from an image captured as the fish is being hauled over the rail at sea, with 

variable lighting, mixed background, and object occlusion, has distinct factors to consider 

compared to analysis of a clear, top-down image of a fish acquired with consistent lighting and a 

stationary featureless background. As such, EMI has defined its research areas and work streams 

based on the requirements needed for each CV algorithm function as well as the types of camera 

systems and image data involved. These work streams are detailed in Table 1. 
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Table 1. -- EMI research streams based on functional algorithm requirements. 

Functional 
algorithm 
requirements 

Purpose Applicable 
fishery 

EM camera 
system type 

Research output 

Fish detection, 
species 
identification 
and length 
estimation  
 

Automating the 
detection, tracking, 
classification, retention, 
and length 
measurements of catch 
events at the rail on 
fixed gear vessels in an 
uncontrolled natural 
environment (mixed 
weather and lighting 
conditions) 

Hook and 
Line 
(HAL) 

Stereo CV 
camera 
system 

EM camera system 
and automated 
algorithms capable 
of running in real-
time (as imagery is 
collected) and 
running post-
processed (once all 
imagery has been 
collected and is 
ready for analysis) 

Fish species 
identification 
 

Automating species 
identification in a 
controlled environment 
under optimal 
conditions (clarity, 
focus, lighting) 

Trawl, 
Others as 
needed  

Single 
camera 
system for 
data 
collection 

Machine learning 
algorithms for post 
processing analysis 

Halibut 
detection and 
length 
estimation 

Automating the count 
and length estimation of 
halibut discards from 
on-deck sorting.  

Trawl Single 
camera 
enclosed 
chute system 

Integrated EM 
camera chute 
for real-time 
analysis of 
halibut bycatch 

Salmon 
detection on 
belts of 
processing 
plants 

Automating the 
detection and count of 
salmon bycatch on 
processing plant belts 
for validation 
compliance 

Trawl Single or 
multiple 
camera 
system 

Automated 
algorithms capable 
of running real-
time and post 
processed  

Crew detection 
and activity 
monitoring on 
deck 

Automating the 
detection of crew and 
tracking activity of 
crew actions 
 

HAL, 
Trawl, 
Others as 
needed 

Single 
camera 
systems 

Automated 
algorithms capable 
of running real-
time and post 
processed 

 

Each stream follows the same research development cycle. This iterative cycle consists of 

areas: 1) the development and deployment of the camera systems for data collection; 2) the 

annotation and cataloging of the collected data; 3) the development and training of the 

algorithms based on the annotated data; and 4) the data analysis and interpretation of the 
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algorithm results. Each cycle has an associated output, these being an EM camera system, a set 

of algorithms, or a combination of both. Figure 1 depicts the iterative research method. 

 

 
Figure 1. -- Development cycle and project output. 

 
 

The EMI team consists of fishery biologists, application developers, electrical engineers, 

and data annotators. Development of automated EM systems capable of identification of species 

and size from collected imagery relies on interdependent camera systems (hardware and 

associated software) and image analysis CV algorithms, models, and applications. Hardware 

designs are uniquely adapted to collect imagery that meets the specific image quality 

requirements of the algorithms. During development and testing of the systems, hardware is 

continually adapted as the image analysis algorithms become more accurate and more robust. It 

is important to note that the images collected by camera systems are not data that can be used by 

fisheries managers as data; images must first be processed into numeric data representing catch 

composition and quantity to be used in estimation, stock assessment work, and other analytic 

activities. Currently, to perform this data transformation, manual review of the imagery is needed 
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to extract required information. To extract and transform this data automatically the CV 

algorithms must be able to detect, track, and classify an object or behavior of interest, as well as 

estimate the size of the object of interest. Images from fishing vessels vary between gear type, 

target species and lighting conditions throughout collections. Hence, the hardware (cameras, 

sensors, and associated software) is developed to support the data needs of computer vision 

algorithms that provide the actual data used in fisheries management. 

The computer vision algorithms are developed using imagery acquired through EMI 

systems deployed on volunteer commercial fishing vessels and scientific research surveys 

(IPHC, and NMFS Sablefish and BSAI/GOA Trawl). This imagery, in the form of photos and 

videos, is collected using camera systems and hardware sensors built and designed by the project 

for the purpose of image acquisition and subsequent analysis. Imagery is acquired, cataloged, 

and annotated by EMI staff, and then passed on to the research team at the University of 

Washington’s Department of Electrical and Computer Engineering (UWECE) for algorithm 

development and deep learning model training. The results of the algorithm development are 

then jointly tested and analyzed, and refinements to the data requirements are specified. The 

acquisition camera systems are then updated and redeployed to collect the new image data and 

the iterative development cycle starts again.  

Each work stream cycle is detailed in its own section below with focus on the four 

iterative development steps. Experiments were periodically conducted to apply the algorithms to 

areas beyond the scope of the work streams, such as applying the fish species identification 

algorithms on birds for classification of birds. These experiments are highlighted together with 

discussions on the steps needed for operational readiness.  
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3. SPECIES DETECTION, IDENTIFICATION AND
LENGTH ESTIMATION - EMI RAIL 

EM systems are currently deployed on small, fixed gear vessels with the purpose of 

collecting data for review (50 C.F.R. §679.51, 2021). These surveillance systems record video of 

catch events as the fish are being hauled over the rail as well as the deck to monitor crew 

activity. Videos are then manually reviewed frame by frame to extract meaningful catch 

accounting information. This is a labor- and cost-intensive task with teams of dedicated video 

reviewers. The time between the actual haul event and final analysis can be quite long as data 

drives are only collected once fishing trips are completed and transferred to the reviewing 

agency. Additionally, the time to complete a review of the data averages around an hour of 

review time for every hour of video data (NMFS 2019). Thus, it is apparent that this review 

process could significantly benefit from image processing automation. 

The objective of EMI Rail is to develop automated video analyses to count, identify to 

species or species group, determine catch disposition, and measure fish as gear is retrieved 

during multi-species longline fisheries. These computer vision algorithms could be integrated 

into EM systems to achieve real-time analysis for catch accounting. While this goal is 

challenging due to environmental and technical limitations, such as power consumption and 

processing capabilities, it is the long-term goal of EMI Rail. 

The current focus of EMI Rail is to integrate the algorithms into the human review 

process to supplement and aid the human review output as well as to alleviate the workload 

required for processing such vast amounts of data. Under laboratory environment testing, the 

current rail algorithms can successfully detect fish within a frame, identify fish to species, and 

determine if that fish had been previously identified from a prior frame (tracking). Fish length is 

estimated from stereo image data. Tracking also determines if the fish was kept or discarded. 

Further determining fate disposition, (discarded live, discarded dead) may be possible, although 

this needs to be investigated further. Figure 2 below summarizes the iterative research and 

development cycle for EMI Rail and anticipated output. 
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Figure 2. -- System and algorithm development cycle for fixed gear fisheries.  

 
  3.1   EMI Rail System - Stereo Camera Image Acquisition 

 

To estimate fish length, stereo imagery is needed to project the shape of the fish in 3D to 

determine depth perception. Depth data allows the machine learning algorithms to discriminate 

objects or behaviors of interest with precision unavailable from two-dimensional (2D) images. 

Stereoscopic vision in humans allows the brain to extract three-dimensional (3D) information 

from the environment, which allows for the perception of depth. In machine vision systems, 

stereo images provide the information necessary from paired 2D images to accurately measure 

an object's size and distance from the camera (Stevens et al. 2013). Obtaining size measurements 

from stereo imagery has been realized by other applications, such as CamTrawl (Williams et al. 

2013), and at the start of EMI’s research program in 2015, this system configuration was the 

most promising to develop. As there were no stereo camera systems on the open market 

specifically for marine applications at the relevant distances and resolutions, this project began 

exploring automated measurement with the development of custom hardware and software.  
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Figure 3. -- Components of the EMI Rail System. 

 

The EMI Rail system consists of hardware and software components that are installed 

and deployed on vessels. Hardware includes machine vision cameras, computers, GPS unit and 

sensors, while software includes the stereo acquisition application and system control application 

(Fig. 3).  

The EMI Rail systems is iteratively designed, built, and deployed to satisfy several 

requirements and constraints (Table 2). The data acquired by EMI Rail system is then cataloged, 

labeled, and annotated, and these annotations are then used to train and build the machine 

learning algorithms. 
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Table 2. -- EM camera system requirements for the Rail system. 
 
Design requirement/constraint   Description 

3.1.1 - Stereo Image Acquisition  This system needs to perform in the same manner as 
current EM systems in the industry but using stereo 
machine vision cameras. Images need to be acquired in 
stereo pairs with clear views of the rail. Image quality 
requirements are based on the needs of algorithm 
development (resolution, angle, distance). 

3.1.2 - Environmental 
Constraints 

The deployed hardware needs to be able to withstand 
challenging environmental surroundings. The design and 
build needs to accommodate power restrictions as 
frequent power outages are expected. Maintenance of the 
hardware needs to be as simple as possible as well. 

3.1.3 - Support For Autonomous  
Collection 

The system needs to operate without the need for input 
action from the vessel crew. Continuous recording of the 
entire trip is not possible; therefore, the system must be 
able to determine periods of data collection based on 
vessel hauling activity.  

3.1.4 - Haul Activity Logging Along with haul imagery, a log of vessel hauling activity 
needs to be recorded, including vessel permit ID, trip 
numbers, vessel location, haul start and end time 

3.1.5 - Deployments Vessel and administration buy-in is required with 
adequate deployment plans 

 

3.1.1   Stereo Camera Image Acquisition  
 

Initial development of the stereo camera system leveraged the research conducted for 

CamTrawl, a stereo camera acquisition system used for underwater research (Williams et al. 

2010). The CamTrawl system includes a custom printed circuit board (PCB) and includes a 

microcontroller for sensor and camera triggering, power management electronics and enclosures 

for the computer and cameras. Development of the EMI Rail system follows this same design 

pattern. Custom PCB boards were designed to support the camera triggering sensors and power 

management. Custom camera enclosures were also built for the MV cameras. Dedicated stereo 

image acquisition software was developed to manage the recording and capture of the image 

frames. 
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GigE vision cameras (MV cameras) were selected and implemented as part of the EMI 

Rail system as they allowed for some degree of programmable flexibility. GigE vision is an 

interface standard for high-performance industrial cameras and provides a framework for 

transmitting high-speed video and related control data over Ethernet networks. 

The design and deployment of the camera housing went through multiple iterations. In 

early designs, custom housings were built, but small camera movements would lead to frame loss 

and calibration issues. The material used for fabrication of the housing was difficult to work with 

and the design was too rigid for trying different camera angles. It was also expensive to produce 

and would be cost-prohibitive for deploying at a large scale. As such, it was determined that 

more affordable off-the-shelf housing units that allow for standard camera orientations would be 

a better option.  

Waterproofing of custom designs also proved challenging. To prevent immersion of 

cameras due to vessel movements, cameras would have to be angled up from the vessel deck. 

Vibration prevented some hardware from maintaining waterproof integrity and some camera lens 

settings were also negatively affected. These issues were addressed in later designs, with one of 

the solutions being the use of Loctite in all hardware and another being the addition of an ‘air 

cushion’, a mechanism to keep the camera lenses from fogging up. The images depicted below in 

Figure 4 highlight the evolution in camera housing design. 

 

 
 
Figure 4. -- Evolution of stereo camera housing design with the left-most photo showing the 

initial camera housing through to the current housing design. 
 
 
For stereo image acquisition and collection, a software application building upon the CamTrawl 

framework was developed. This application is responsible for acquiring image pairs at a 

specified frame rate and recording them to disk. While initially built using the GigE standard to 
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allow for easy adaptation to different camera products, this eventually revealed itself to not be 

necessary. It was determined that variations between the MV camera vendors were greater than 

anticipated and priority was given to camera pairs that proved more robust during deployments 

and whose firmware was well supported. This, however, does limit the current stereo image 

collection hardware to only those camera types. Further research and development in 3D camera 

stereo acquisition will need to address this issue and there are more low-cost options appearing 

on the market to collect stereo images as the 3D information is useful for many computer vision 

algorithms. 

In early builds and deployment of Rail systems, image pair syncing was also an issue. 

This was mostly caused by moving the camera triggering from a hardware-based to a software-

based triggering mechanism. While this removed the need for a custom micro-controller, the 

signal conditioning required between the camera pairs increased the complexity of custom built 

boards that utilize the internal opto-isolated trigger lines. Exposure settings can also cause the 

software-triggered cameras to get out of synchronization with each other. This is difficult to 

detect without direct comparison of images displaying a unique event that can be assessed to the 

millisecond. 

The camera pair is connected to a waterproof PC via Ethernet. This PC is configured to 

run the acquisition application on system startup and begin acquiring images until the PC is shut 

down. The shutdown signal is triggered from the controller application running on a second, 

lower powered, waterproof PC (see Section 3.1.4 for further details on the control PC). Figure 5 

below shows an image pair acquired through the EMI Rail system. 

 
 

Figure 5. -- Example of synced stereo images acquired with the EMI Rail system. 
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MV cameras with infrared (IR) capabilities were also deployed on study research vessels 

using the same configurations. In these deployments four cameras are installed, a pair of standard 

MV stereo cameras and a pair of IR cameras. Two sets of image pairs are acquired 

simultaneously. 

While the strategy to deploy MV cameras was chosen with the intention of providing 

high resolution images for algorithm development, it became unnecessary as latter training and 

development with lower resolution images produced equivalent results when compared to the 

training of higher ones. The high resolution affects the size of the image files, and the image data 

volume negatively impacts real-time processing and storage options. Internet Protocol (IP) video 

cameras, like those used in standard EM deployments, capturing lower resolution images have 

been integrated into the 2020 stereo acquisition collection systems to enable testing and 

development of single camera algorithms for use with Rail data. 

 
3.1.2 Environmental Constraints 
 

There are significant challenges when deploying EM systems onboard fixed gear vessels 

for use at sea. The two most significant of these are the environment, ensuring electronics are 

protected from the ocean elements, and managing the power constraints and restrictions on the 

vessels. 

It was established early in the system development life-cycle that a waterproof PC would 

be required. Proof of concept PCs were built with this aim in mind using custom fabricated 

housings. Early deployments were made with these systems, but it became apparent that these 

components would not be robust enough to withstand the 16–20-hour collections per day and 

overheating and data storage issues needed to be addressed. Custom-built PCs were also not 

sustainable as the cost was not in line with the strategic goal of having cost effective systems that 

vessels could buy and install on their own. To overcome these issues, off the shelf fan-less IP67 

rated waterproof PCs were obtained. While system uptime increased significantly, other issues 

such as endpoint corrosion were unavoidable. Vibration was also an issue in some deployments, 

affecting the ability to maintain waterproof integrity and negatively impacting camera cabling 
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connections. Mounting the PC units onto plates helped mitigate some of these issues. Due to the 

variation to the location of PC units onboard the vessels, unique configurations were developed 

for each deployment. Therefore, a uniform design could not be developed across vessel 

installations. Images in Figure 6 show the evolution of the PC components. 

 

Figure 6. -- EM Rail system hardware evolution. Left image depicts initial design with right 
image being the most recent deployed version. 

 
Power consumption onboard the deployed vessels was also a major concern. Power cuts 

can be a frequent occurrence and protecting system components with individual fuses became 

necessary given the environment and complexity of the wire runs. It was also unrealistic for the 

cameras and PC to be continuously powered, especially when there is no fishing activity, or to 

require the vessel crew to turn on the cameras and PC every time they begin to retrieve gear as 

this can lead to inconsistency and misrepresentation. Hence, triggers and autonomous collection 

strategies were needed. 

 
3.1.3 Support for Autonomous Collection 
 

The EM Rail System needs to be autonomous; it should run without the need for user 

input. This is to allow for minimal impact to the fishing activities of the crew as well as to keep 

accurate records of hauling activities. To detect fishing activity sensors were placed onboard to 

detect proper intervals for image data collection. Some sensors, like hydraulic sensors and GPS, 

were like those used by standard EM camera systems that monitor gear and vessel activity. Other 

sensors monitor human behavior or location by utilizing acoustic- or infrared- derived proximity 

measurements. Sensors indicate when the haul starts and ends. The sensors tested were 
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connected to a microcontroller unit and low-power control PC. The control PC monitors the 

sensor data and sends a Wake-on-LAN (WoL) signal to the connected high power acquisition PC 

which in turn powers up the cameras and acquisition software and begins acquiring images. 

Once the sensors indicate that hauling activity has ceased, a shutdown signal is sent to the 

camera PC. 

Sensors tested include hydraulic sensors, acoustic, infrared light sensors, LIDAR sensors, 

and IP cameras. Hydraulic sensors proved to be difficult to work with and the exclusive use of 

these sensors to identify hauling periods and trigger cameras proved to be unreliable for precise 

identification of the start and end of fishing periods. Additionally, hydraulic sensors are highly 

variable between vessels due to differences in individual vessels’ dockside and at-sea power 

supplies. Secondary sensors were developed to identify fishing activity with more precision. 

Radio-frequency identification (RFID) tags and acoustic proximity sensors were deployed to 

supply more precise haul time data, but both proved to be unable to withstand the marine 

environment for extended periods of time. Infrared (IR) sensors were tested as drum rotation 

sensors and as proximity sensors; both performed well but ran the risk of getting blocked by gear 

after installation. As a drum rotation sensor, they performed well and required less waterproofing 

than the haul sensors. Garmin Lidar proximity sensors were also tested and were found to be 

sufficiently robust for deployment.  

Current research aims to incorporate region-of-interest IP cameras and the detection of a 

crew member (presence/absence detection) as a trigger to start monitoring systems recording. 

Section 7.5 elaborates on this detection trigger. 

 

3.1.4 Haul Activity Logging 
 

To collect useful data for management, metadata is automatically recorded for each haul 

as part of the system. This data consists of information such as: vessel permits, trip number, 

vessel location and haul start and end times. For positional and time information, a GPS unit is 

connected to the continuously powered control PC. GPS coordinates are logged and the start and 

end times for each haul are recorded when the connected sensors indicate when to start and stop 

the haul monitoring. Timestamps are also included on all images that are acquired, aiding with 
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the timekeeping reports when needed. When combined with the analysis results from the haul 

imagery, a holistic dataset can be obtained of what fishing activities occurred for each haul. 

 

3.1.5 Deployments 
 

Deployments were conducted on vessels targeting Individual Fishing Quota (IFQ) 

Halibut and Sablefish, the AFSC’s Auke Bay Laboratory’s Sablefish Longline survey, and the 

International Pacific Halibut Commission’s (IPHC) setnet survey. Prior to each deployment, the 

MV cameras and image quality settings were configured to the specific environment on the 

vessel. Infrared cameras were field tested for the capture and analysis of fishing events in low 

light conditions. For certain deployments, it was only necessary to test the GPS unit and sensors 

for identifying precise haul start and stop time without cameras. These deployments were 

specifically made to test drum rotation and proximity sensors. This sensor testing system is 

referred to as EM Lite. Table 3 lists the deployments made to date for the rail stream. 

 
Table 3. -- EMI Rail system deployments. 
 
Year Deployments Notes 
2015 3 vessel deployments 

• FV Bold Pursuit 
• FV LaPorsche 
• FV Northern Endurance 

 

44 hauls including 35 paired hauls 
634 GB of data 
 

2016 3 vessel deployments 
• FV Kariel 
• FV Marilyn J 
• FV Middleton 

 

120 hauls including 97 paired hauls 
1340 GB of data 
 

2017 4 vessel deployments 
• FV Kariel 
• FV Middleton 
• FV Pender 
• FV Van Isle 

 

104 hauls including 84 paired hauls 
Infrared cameras were tested 
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Table 3. -- Continued 

2018 5 vessel deployments 
• FV Alaskan Leader 
• FV Defender* 
• FV Kariel 
• FV Middleton 
• FV Predator 

254 hauls including 173 paired hauls 
Infrared cameras were tested 
*EM Lite test deployment 

2019 7 vessel deployments 
• FV Defender* 
• FV Kariel 
• FV Kema Sue  
• FV Middleton 
• FV Ocean Prowler 
• FV Pacific Surveyor  
• FV Predator 

 

274 hauls including 71 paired hauls 
Infrared cameras were tested 
*EM Lite test deployment 
 

2020 3 vessel deployments 
• FV Alaskan Leader 
• FV Defender* 
• FV Middleton 

 

*EM Lite test deployment 
 

 

The image data that are acquired and collected during the deployments were catalogued 

and annotated for algorithm training. 

 

  3.2   EMI Rail Annotation  
 

Image annotation is the process of manually defining regions in an image and creating a 

textual description of those regions. Annotations can then be used to train machine learning 

algorithms for computer vision applications. For the training of detection and classification 

algorithms used with the Rail system, annotated Rail images are needed. Images are acquired as 

per Section 3.1 and annotated using 2D bounding boxes. Bounding boxes are rectangular points 

of reference used to designate object locations for image processing. 

Bounding boxes are drawn over an image, shape, or text to define its X and Y 

coordinates. This is the start of the process of training a machine to recognize distinct types of 
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objects. They are essential for object identification tasks. Table 4 below lists the annotation 

bounding box requirements for the training of the rail algorithms. 

 
Table 4. -- Annotation requirements for EMI Rail  
 
Annotation requirement Description 

3.2.1 - Species Detection and  
           Classification 

Annotation 

The algorithm required at least 3,000 bounding box 
annotations for each species to provide useful confidence 
levels. For each vessel, 6 hauls are selected, with each 
containing a section of 10,000 images for annotation. 
Those images are used to train the algorithm. 

3.2.2 - Tracking and Quality  
           Assurance Annotation 

Annotations needed for tracking algorithm 

 

3.2.1 Species Detection and Classification Annotation 
 

 To train rail detection and classification algorithms, the analysts indicated that at least 

3,000 annotations (bounding boxes) per class would be required to account for the various 

appearances, background, poses and transformations the object can take. To tailor the learning to 

multiple angles and lighting changes, annotated images are required from different vessels. 

When training algorithms for computer vision, annotation tools allow human annotators 

to move, transform, rotate, and scale the bounding boxes. The current annotation tool is the open 

source LabelImg software application (Lin 2016). LabelImg allows for object hierarchies and is 

used for annotating species identification purposes. A species hierarchy is used for annotating 

species labels to the lowest level possible. For instance, if the fish is an unidentified flatfish, the 

image is labeled flatfish unidentified. If the annotator can identify a species to Pacific halibut, the 

image is labeled as “Pacific halibut”. Both are classified as flatfish when run through the 

classification algorithms, with identification to species level directly related to user defined 

confidence levels. A user can then assess and define the quality of the algorithm derived data of 

species classification and select the taxonomic identification and associated confidence most 

appropriate for management needs. 

Due to the vast amount of rail imagery acquired per year, an annotation protocol was 

developed and maintained for consistent algorithm training. For each year imagery was acquired, 
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and for each vessel, six hauls were randomly selected for annotation. From each haul a random 

segment of 10,000 images were then selected to be annotated. These 10,000 images were 

reviewed, and bounding boxes were created for each fish, bird, and piece of fishing gear (hooks, 

buoys, etc.) that came into frame for the entire duration of time that target was in frame. 

Oftentimes multiple targets are in each frame as birds are often near the fishing gear. All fish and 

birds in frame are labeled this way and notes are made if the target is not on a hook. Table 5 

below highlights the number of annotations made between 2015 and 2019. Due to time and 

resource constraints bounding box annotation for 2017 was skipped in favor of data from later 

years. 

 

Table 5. -- Summary of annual Rail system image annotations. 
 
Year Application # Images reviewed # of Bounding boxes 
2015 Rail Camera 527,276 1,560 
2016 Rail Camera 50,000 31,001 
2017 Rail Camera 50,000 none 
2018 Rail Camera 156,7411 257,293 
2018 Rail Infrared Camera 75,000 5,670 
2019 Rail Camera 269,028 18,878 

 
 

The LabelImg software outputs an xml file that includes the image name, species 

classification, and bounding box information (Fig. 7).  
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Figure 7. –  The LabelImg user interface, with manual bounding box and label annotation. 
 

3.2.2 Tracking and Quality Assurance Annotation 
 

‘Tracking’ refers to the tracking of the detected object from one frame to another in a set 

of sequential frames. Accurate tracking is required to determine the count of unique objects. For 

example, in an hour of video footage there could be 1,000 fish detections, but this does not mean 

that 1,000 fish were caught, as the same fish will appear multiple times throughout the sequence 

of frames of the video. Tracking allows for the determination of one object from another in a 

sequence. By tracking the direction of the movement of the object, in this case a fish, tracking 

also allows for determining if the fish is coming up into the vessel or going back into the 

direction of the ocean. This direction tracking allows for the determination of whether the fish 

was discarded or retained. 

Training of the tracking algorithms is accomplished by checking the output, correcting 

missed detections through annotation, and retraining the tracking model. Each track is checked 

for completeness to ensure there are no missed detections resulting in multiple tracks for the 

same object and consequently incorrect object counts. For this tracking annotation, the 

LabelTrack software program (Huang, 2017) is used. LabelTrack takes as input the output from 
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the tracking algorithm which includes species classification, tracking identifiers (IDs), and 

bounding box detections and was developed specifically for this project. Each track is given a 

confidence score so that the tracks can be sorted by confidence level. This allows the reviewer to 

focus on a certain range of accuracy while bypassing the highly confident tracks. Figure 8 

depicts a screenshot of the LabelTrack application and illustrates the difference between 

LabelTrack and LabelImg above. 

 

 
 
Figure 8. -- LabelTrack being used to check the output of the tracking algorithm; annotations 

(bounding boxes) are used to correct and retrain the tracking algorithm. 
 
 

Tracking annotation review includes checking for species classification accuracy and 

ensuring tracks are connected through an entire catch event. This manual review is resource 

intensive as bounding boxes need to be created around each target object for the duration of time 

the object is visible, manually correcting each track per frame. Initial review of hauls took 

approximately 80 hours per person per haul to correct but as the accuracy of the algorithms 

improved with each subsequent retraining, the number of needed corrections decreased making 

the review process more efficient over time. 



22 
 

The output annotations from both LabelImg and LabelTrack are used for training the Rail 

detection, tracking, and classification algorithms. 

 

3.3   EMI Rail Computer Vision Algorithms 
 

The goal of the computer vision algorithms developed for fixed gear hook-and-line 

fisheries is to identify the species of each fish, count the number of each species, determine its 

length, and determine if the fish was retained or discarded from imagery collected at the rail. To 

accomplish this, the algorithms need to be able to detect the fish in the image frame, track the 

movement of the fish from one frame to another, and then classify the fish to species and 

estimate its length. Figure 9 depicts the steps involved from inputting stereo images to obtaining 

data suitable for catch accounting. 

 
 

Figure 9. -- Flowchart showing the Rail system data inputs, algorithm sequences, and final 
output data.  
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There are significant challenges when attempting to automate the detection, tracking, and 

classification of fish at the rail. Deformable objects (objects whose shape changes as it moves in 

3D space), noise from the sea surface, and dynamic image background all make conventional 

tracking, segmentation (separation of the object from the background of the image), and 

classification methods unreliable (Huang et al., 2019). As a fish on the longline gear (hook) 

moves from the waterline to the rail, it quickly changes its appearance, bending and deforming 

its shape, which can lead to lost detections during the tracking process. This deformation and 

pose variation can change the fish’s visual features and make species classification challenging. 

Added to this the dynamic sea water background can cause problems in object segmentation and 

the estimated range information. To overcome these challenges, a 3D tracking and segmentation 

system for stereo video-based monitoring of Rail fish caught with a sea surface background was 

developed. Table 6 below highlights the utility (functional requirements1) for each of the EMI 

rail computer vision algorithms. 

 
Table 6. -- Descriptions of Rail system computer vision algorithms. 
 
Functional algorithm process Description 

3.3.1 -Stereo Camera 
Calibration 

Used for intrinsic and extrinsic calibration of the stereo 
cameras.  

3.3.2 - Rail Detection  Used for finding the fish/item in the frame. The detector 
takes as input a list of images, for the stereo camera 
systems the list is of images acquired from the left camera. 

3.3.3 - Rail Tracking and 
Segmentation 

Used for tracking the detected fish/item from one frame to 
another. Segmentation refers to subtracting the background 
from the frame detection to perform further analysis 

3.3.4 - Rail Length Estimation Used for calculating length estimations using stereo input 

3.3.5 - Rail Classification Used for classifying the detected fish to species. 

 

3.3.1 Stereo Camera Calibration 
 

By using the stereo camera system, it is possible to acquire range information to facilitate 

tracking and measurement of catch items. For reliable stereo range estimation, the cameras need 

to be calibrated. The calibration algorithm calculates the camera matrix using the extrinsic and 

                                                      
1 The system functional requirements define the basic system behavior; what the system must and must not do. 
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intrinsic parameters through use of checkerboard calibration pattern before the fishing vessel 

goes to sea for fishing activities. The resulting calibration file is used as input for stereo tracking 

and segmentation (Figure 10). 

 
 
Figure 10. -- An example of the checkerboard used in calibration of the stereo Rail system. 
 
 
3.3.2 Rail Algorithms - Detection 
 

Object detection is used to assess whether an object of interest is in the frame. An object 

detection model is trained to detect the presence and location of multiple classes of objects. 

Given an image or a video, the object detection model can then identify which of a known set of 

objects might be present and provide information about their positions within the image. When 

images are provided to the model, a list of the objects it detects is outputted. Output consists of a 

bounding box location that contains each object and a score that indicates the confidence of the 

detection. 

For fish detection at the rail, two different object detectors are applied: SSD (Single Shot 

MultiBox Detector) (Liu et al., 2016) and YOLOv3 (You Only Look Once) real-time object 

detector (Redmon 2018). SSD detects objects in images using a single deep neural network, 

discretizing the output space of bounding boxes into a set of default boxes over different aspect 

ratios and scales per feature map location. The network generates scores for the presence of each 

object category in each default box and produces adjustments to the box to better match the 

object shape (Liu, et al. 2016). The YOLOv3 real-time object detector applies a single neural 

network to the full image. This network divides the image into regions and predicts bounding 
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boxes and probabilities for each region. These bounding boxes are weighted by the prediction 

probabilities. 

The training of both detectors is based on 10,000 labeled frames from video sequences, in 

which 80% of the labeled frames are used as the training set and the remaining 20% as the 

validation set. In its current state the detector is trained to detect the following classes of fish: 

• Flatfish (Pleuronectiformes) 

• Invertebrates (Invertebrata) 

• Rockfish (Scorpaenidae) 

• Roundfish (fish other than flatfish or rockfish) 

• Sharks (Selachii) 

• Skates (Rajiformes) 

 

Once the model is trained, a list of images can then be run through the detector. In the 

case of stereo haul images, the list consists of the images acquired from only one of the cameras. 

A trained weightings file and a configuration (config) file with classifications are also used as 

input. Weights are the learnable parameters of a machine learning model that control the strength 

of the connection between two neurons. A weight decides how much influence the input will 

have on the output. 

Once the detection process is completed a csv file is output containing the name of the 

image, the bounding box coordinates of the detection, the confidence rating, and the detection 

classification (Fig. 11). An example of the bounding box of an output detection is depicted on an 

image in the corresponding Figure 12 below. These detection results are then processed through 

the tracking and segmentation algorithms to determine the number of catch items that are 

detected. 
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Figure 11. -- Example of the output detection CSV file (Rockfish with 0.99 certainty) 

 

 
 

Figure 12. -- A catch item with the first level detection (Rockfish) bounding box.  

 
3.3.3 Rail Algorithms - Tracking and Segmentation 
 

The fish objects that were discovered through the detector need to be tracked to 

determine unique fish catch events to provide reliable count and discard/retention information for 

estimation of at-sea discards for the hook and line fisheries. The detector output will indicate that 

an object of a certain class (such as ‘Rockfish’ in the example in 3.3.2) was found; however, in 

the case of continuous input frames it needs to be determined whether the detected object in the 

current frame is the same as the detected object in the previous frame. In the cases where there 
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are multiple fish detections in the same frame, these need to be tracked and segmented. Added to 

this complexity is the tracking of highly deformable objects in a noisy environment. When a fish 

is being pulled up from the sea, the view of the fish changes shape relative to the camera making 

tracking difficult. 

Segmentation and length measurement face challenges from the noisy and dynamic sea 

surface environments in the background of the image. Traditional segmentation methods using 

background subtraction in color images cannot work because the abrupt white-water noise and 

strong shadows can merge to the foreground. The segmentation process consists of three steps: 

background plane clustering, pixelwise classification and global refinement. 

For tracking of highly deformable objects in a noisy environment, the method combines a 

deep convolutional neural network (D-CNN) image object detector with a Kalman filter in 3D. 

The tracking method consists of four main steps: object proposals, proposal re-scoring, tracking 

and learning parameter estimation, and generating weighting constants (Fig. 13). Object 

proposals come from the 2D object detector (see Section 3.3.2). These 2D object proposals are 

then projected to 3D objects using foreground segmentation in RGB-D (red, green, blue, depth). 

The position (X, Y, Z) and size (W, H, D) of the 3D object proposal are then passed to a Kalman 

filter for re-scoring. Scoring is also called prediction and is the process of generating values 

based on a trained machine learning model, given some new input data. The values or scores that 

are created represent predictions of future values. The Kalman filter tracks the objects and 

predicts the locations in 3D. Tracking is the result of associating the current predicted tracks with 

the proposals by matching the highest score above a predetermined threshold. If a track cannot 

be associated with any object proposal, it is assumed to be temporarily missing but if a track is 

missing for several frames, then that track is stopped and a new track starts for the next object. 

The parameters used in the proposal rescoring can be systematically learned from the training 

data. This results in a set of tracks of object detections, or in this case, a set of unique fish 

detections (Fig. 13). 
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Figure 13. -- Flow chart of the object tracking and segmentation process. 

 
The tracking and segmentation process outlined above results in two csv files. The first is 

a ‘summary tracks file’ that contains the track information such as its object class, aggregate 

confidence score, retention/discard information (kept), aggregate length estimation, and track 

duration (number of frames that make up the track). The second output file is the ‘frames’ csv 

file which contains the detailed information for each frame. Using the same set of data and 

detection output from the example in Section 3.3.2, from the earlier example, image detection is 

part of track 210 and consists of 29 consecutive images (see Fig. 14: track csv file and Fig. 15: 

frame csv file). The image sequence in Figure 16 illustrates the movement and subsequent 

tracking of a detected Rockfish. 

 

 
 
Figure 14. -- Example of tracking csv file showing one record per track. Length estimation is not 

available at this time and is marked as -1. 
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Figure 15. -- Example of tracking csv file showing one record per frame. 

 

 
 
Figure 16. -- A series of images showing the tracking movement of a detected Rockfish. Track 

numbers and classification are indicated above the bounding box in each frame. 
 
3.3.4 Rail Algorithms - Length Estimation 
 

The development of length estimation algorithms further builds upon the 3D projections 

created by the tracking and segmentation algorithms. Two methods to estimate fish length were 

evaluated: 3D midline calculation and estimation of lengths from multiple frames. To measure 

the fish length more accurately when the fish body is curved, the 3D midline of the fish body is 

found based on the back-projected point cloud of the fish body in 3D (Fig. 17). The fish body is 

first separated equally into 𝐻𝐻 bins along the major axis given by performing principal component 
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analysis (PCA). For each bin, the geometric center of the point cloud is found and then the center 

points of each bin are connected to form the 3D midline and measure the midline length of the 

fish. Currently, evaluations of the 3D midline calculation are ongoing, and efforts are expanding 

to determine how to achieve these same results using 2D monoscopic camera images. 

 
 
Figure 17. -- Schematic of the midline calculation length estimation method. The 3D midline is 

acquired by connecting the center point of each bin along the major axis. 
 
3.3.5 Rail Algorithms - Classification 
 

Recognizing fish species from a video image when the fish is captured live (is moving in 

3D space) against a sea surface background is challenging due to the deformation of fish shape, 

self-occlusion of body parts, and similar texture between different fish classes (Huang 2019). 

Prior work on fish species classification usually relies on hand-crafted features, saliency part 

association or codebook learning, but most of these are for use in controlled or stable 

environments where fish are in similar poses or shapes (Huang 2019). In the case of fish at the 

vessel’s rail, fish can change shape and orientation freely, resulting in dramatically different 

visual features and self-occlusions. Additionally, many species of fish share similar colors and 

textures, making discriminant features difficult to identify. Varying lighting conditions also 

makes it difficult to distinguish similar species (see Fig. 18 for examples where the same species 

of fish can look vastly different from one image to another). 

Feature extraction and classification algorithms for use with Rail system data need to be 

robust to account for fish in any orientation and in different poses while at the same time being 

able to find the difference between similar looking species. To address these issues, a fine-

grained image classification method based on a deep convolutional neural network (CNN) 
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trained by an innovative metric learning scheme with a temporal constraint was developed 

(Huang et al. 2019). 

 
 
Figure 18. -- Images showing variations in features between fish of the same species. 
 
 

The fish species classification model takes the tracked fish from the video as input (the 

tracking output from Section 3.3.3) and uses the temporal information between frames to extract 

useful features. By applying deep metric learning with a temporal constraint, the model is forced 

to learn the closeness between temporal neighbor frames. Based on the temporal constraint, two 

classification models (representative feature classifier and semantically-decoupled temporal 

attention) were investigated. 

The representative feature classifier discriminatively learns the representative features of 

each class (species) and uses them for feature aggregation during prediction. The semantically-

decoupled temporal attention model learns which multiple attention groups to focus on for 

different feature dimensions. A diversity constraint is applied to make different attention groups 

focus on different frames and feature dimensions. The experimental results show that this 
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approach outperforms the conventional softmax classification on the current rail-fishing dataset 

(Huang 2019). 

This proposed method was evaluated on an initial dataset consisting of cropped image 

frames of 17 classes. The dataset was captured on cameras from different fishing vessels (see 

Section 3.1). The bounding boxes of the fish and the fish species were labeled as part of the 

annotation process (see Section 3.2). The training set consisted of 135,150 images of fish in 17 

classes. These 17 classes are subclasses of the initially detected classes in Section 3.3.2 and are 

listed in Table 7.  

Table 7. -- List of Rail species classes, class types, and numbers of images in the training dataset. 
 

Species class Type class 
Images 

Trained 

Anemones (Actiniaria) Invertebrates (Invertebrata) 667 

Flathead sole (Hippoglossoides elassodon) Flatfish (Pleuronectiformes) 100 

Grenadier (Macrourinae) 
Roundfish (fish other than 
flatfish or rockfish) 6946 

Hard snout skate (Raja) Skate (Rajiformes) 2225 

Kamchatka/arrowtooth/turbot complex Flatfish (Pleuronectiformes) 1221 

Octopus (Octopodiformes) Invertebrates 169 

Pacific cod (Gadus macrocephalus) 
Roundfish (fish other than 
flatfish or rockfish) 2152 

Pacific halibut (Hippoglossus stenolepis) Flatfish 41311 

Redbanded rockfish (Sebastes babcocki) Rockfish (Scorpaenidae) 1062 

Sablefish (Anoplopoma fimbria) Roundfish 19374 
Shortraker, rougheye, blackspotted rockfish, 
unidentified (Sebates borealis, aleutianus, 
melanostictus) Rockfish 1348 

Soft snout skate (Bathyraja) Skate 1080 

Spiny dogfish (Squalus suckleyi) Shark (Selachii) 51371 

Spotted ratfish (Hydrolagus colliei) Shark 193 

Thornyhead unidentified (Sebastolobus) Rockfish 4340 

Yellow Irish lord (Hemitripterus bolini) Roundfish 58 

Yelloweye rockfish (Sebastes ruberrimus) Rockfish  1533 
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Training of the dataset is ongoing; however, in its current configuration, running the rail 

classifier updates the tracking csv with these classes, the bounding box coordinates, and 

confidence level. Following on the examples from 3.3.2 and 3.3.3, Figure 19 below shows the 

updated extract of the tracking csv file. This last step of the Rail algorithms shows the frame 

where the fish was detected and tracked and the final classification to thornyhead (Fig. 20). This 

combination of the output allows the estimation of the number of each species needed for catch 

accounting. 

 

 
 
Figure 19. -- Sample of species identification output per track csv file showing the track ID, 

image filename, and species identification (class). 
 
 

While positive results have been achieved with the current model, research into the 

classification for the Rail system data is ongoing. Current investigation and research include 

extending and streamlining the classification hierarchy to increase the number of classes as well 

as applying the species classifier developed for use with controlled environments (Section 4.3) to 

the Rail. 
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Figure 20. -- Sample image of rockfish in Figure 12 classified to Thornyhead. 

 
 

3.4   EMI Rail Algorithm Review and Results 
 

The success factors for the development and implementation of algorithms for automated 

catch accounting data for fish caught at the rail are twofold: 

• Accuracy. The algorithms need to be able to make predictions with a high degree of 

confidence while achieving as few false positives as possible.  

Runtime processing performance. The time it takes to process data automatically should 

be as fast as or faster than the time it takes to complete the same task by a human 

reviewer. 
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3.4.1 Rail Algorithms - Accuracy Results 
 

Research results for detection, tracking, classification, and length measurements for fish 

at the rail have been positive. Testing and development of the algorithms have primarily been 

conducted on controlled datasets (see Section 3.3.5). The classes included are of species with 

enough image data available to train the algorithms, they do not include all species encountered 

particularly rare species, and some classes are species groupings that mirror visual identification 

protocols for observers for catch accounting collections. The following results of classifications 

and tracking for fish at the rail have been achieved using these trained datasets. Based on this 

testing, detection, tracking, and classification accuracy is high for four species; Pacific halibut, 

sablefish, spiny dogfish, and grenadier, mostly giant grenadier (Table 8) which is expected since 

there are more images of those species of fish in the training and testing datasets.  

For each species class in the dataset several pre-identified tests were selected. These 

images were then run through the classifier to achieve the per-image accuracy. Accuracy was 

measured by the number of correct classifications that were achieved with a high confidence 

level. False classifications and missed classifications were counted against the accuracy score. 

For evaluating the accuracy of the tracker, the same dataset was run through the tracker and the 

resulting tracks were run through the classifier.  

Fish species classifications were split into a hierarchy-grouped into a more generalized 

set of classes including sharks, skates, flatfish, rockfish, roundfish, and invertebrates, then 

classified to species within these groupings. The classes included are of species with enough 

image data available to train the algorithms; they do not include all species encountered, 

particularly rare species. One species class includes the rougheye, blackspot, and shortraker 

rockfish species, which are grouped to mirror visual identification protocols for fisheries 

observers. 
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Table 8. -- Classification and tracking algorithm results for a controlled dataset showing the 
species, number of images, and accuracy at the image and track levels. 

 
 

Accuracy % 

Species Number of images 
tested 

per-
image  

per-
track 

Anemones (Actiniaria) 20 70.3 % 80 % 
Flathead sole (Hippoglossoides elassodon) 6 68 % 66.7 % 
Grenadier 147 90.9 % 93.2 % 
Hard snout skate (Raja) 25 88.2 % 91.7 % 
Kamchatka/arrowtooth/turbot complex 37 79.7 % 83.3 % 
Octopus (Octopodiformes) 4 82.1 % 100 % 
Pacific cod (Gadus macrocephalus) 40 83.9 % 90 % 
Pacific halibut (Hippoglossus stenolepis) 686 96.8 % 98.3 % 
Redbanded rockfish (Sebastes babcocki) 23 80.2 % 90.9 % 
Sablefish (Anoplopoma fimbria) 420 95.5 % 96.7 % 
Shortraker, rougheye, blackspotted rockfish 
unidentified (Sebates borealis, aleutianus, 
melanostictus) 36 65 % 72.2 % 

Soft snout skate (Bathyraja) 22 68.7 % 54.5 % 
Spiny dogfish (Squalus suckleyi) 923 97.9 % 98 % 
Spotted ratfish (Hydrolagus colliei) 5 55.2 % 50 % 
Thornyhead unidentified (Sebastolobus) 88 86.7 % 90.9 % 
Yellow Irish lord (Hemilepidotus jordani) 2 44.8 % 0 % 
Yelloweye rockfish (Sebastes ruberrimus) 10 68 % 80 % 

Complete dataset 2494 77.8 % 78.6 % 
 

To further assess the accuracy of the algorithms in a real world scenario, testing is 

ongoing using data from the EMI Rail System initially used for acquiring training images. 

Additional fixed gear haul data collected via traditional human reviewed EM systems is also 

being tested. Data analysis of data from these tests will form a better understanding of how the 

Rail algorithms will perform in an operational environment. Measuring the length estimation 

accuracy for fish caught at the rail has been difficult to measure due to the lack of ground-truth 

observations to compare with the test results. This testing and retraining of Rail algorithms 
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against ground-truth observations based on standard EM video review is a continuing effort as 

more one to one data are collected and annotated. 

 
3.4.2 Rail Algorithms - Processing Results 
 

Initial analysis and testing of the EMI Rail algorithms have proved positive; however, the 

time it takes to process and analyze the results to produce data suitable for use in catch 

accounting is equally important. Any cost-benefit advantages of implementing automated 

solutions could be minimal or negated if automation processes take longer to produce results 

than human review, then the. Initial processing results have shown the automated process to be 

capable of analyzing data close to real time human analysis, and algorithms can be automated to 

run 24 hours a day, so a time savings is possible. The current review program can take up to two 

weeks before data are available to FMA.  

To obtain species specific catch data, imagery from a haul needs to be run through the 

detection algorithm, followed by the tracking and segmentation algorithms, and then the 

classification algorithm. The detection and tracking algorithms make use of the computer’s 

central processing units (CPU) processing power while classification algorithms require a 

dedicated graphics processing unit (GPU). For performance testing, imagery from select hauls 

was processed end-to-end using a high-powered CPU and GPU computer. The following results 

in Table 9 were attained using this machine as a benchmark. 

Table 9. -- Algorithm processing benchmark results for processing 9,000 images, representing  
                  approximately 30 minutes of catch retrieval time. 
 

Algorithm Number of images 
Images represent real world 
catch retrieval time 

Average time to 
process 

Detection 9000 30 min 23 min 
Tracking and 
Segmentation (2D) 9000 30 min 10 secs 
Classification 9000 30 min 17 min 
Total analysis runtime 9000 30 min 40 min 
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Performance results will vary depending on hardware capabilities and the number of 

detections in the imagery. For example, in one set of images there may be more hauling activity 

than in another set thus requiring more detections to be processed; this makes it difficult to fully 

gauge the time it takes to analyze a complete haul. Only by running further hauls will a baseline 

be established. 

The results of this analysis then need to be human reviewed for quality assurance and 

accuracy measurement. This quality assurance and final reporting is in its preliminary stages 

with further results yet to be produced. By combining the results of analysis with data extracted 

from the EM Rail system haul log data from when the haul imagery was acquired (vessel 

information, GPS coordinates, haul start/end time etc.) a holistic view of the catch can be 

obtained.  

 

3.5   EMI Rail Discussion and Operational Readiness 
 

The long-term goal of the EMI Rail research is to implement a real-time EM system, 

acquiring and analyzing the image data at the same time. This analysis can then be transmitted to 

and integrated into the Observer Program data reporting stream. While this real-time analysis is 

not possible yet due to current technical and development limitations, it remains one of the 

research programs goals for catch reporting for fixed gear vessels. In the meantime, while the 

EMI Rail stereo system and algorithms continue to be refined and developed with this integrated 

solution in mind, the EMI Rail system and EMI Rail algorithms can now be applied to other 

research and development efforts. 

Implementation strategies will need to be defined for both the EMI Rail algorithms and 

EMI Rail camera system before any production-level implementation can take place. These 

strategies should define how algorithms will be run in the field and how they will scale across 

fisheries as well as the operational (business) processes related to integration with existing EM 

and observer data streams. 
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3.5.1 Rail Algorithms - Implementation and Collaboration 
 

In the absence of real-time processing of the algorithms on board vessels, the standalone 

algorithms can be applied to the current review data cycle to augment the human review process. 

The current reviewer software isolates hauling periods but does not isolate each fish caught on 

the line, so reviewers currently scan the entire haul period for catch events of fish caught. By 

processing hauls through the algorithms, catch events can be detected before the human review 

process starts, the human reviewer will then only need to review the automated detections 

instead of scanning the entire video record for catch events (detections), potentially decreasing 

review time. Integrating the EMI Rail algorithms into the current data review process would 

have the following benefits: 

• Increased productivity of human reviewers by reducing their workload by finding and 

labeling detections. 

• Increased number of video haul catch reports since more video could be reviewed (for a 

given amount of time). 

• Every haul can be ‘pre-processed’ through the algorithms whereas currently not all hauls 

are reviewed. 

• Running of the algorithm application on hauls can occur concurrently on a 24hr per day 

cycle limited only by computing power. 

• Video review using standard (human-based) methods can be better prioritized. If certain 

events are automatically detected in the haul, priority can be given for standard-review of 

that specific haul 

• If more events are detected in certain hauls over others, it can be predetermined which 

hauls are more likely to take longer for standard review than others. 

To achieve this sort of integration, the algorithms would need to produce detections and events 

like that of the human reviewer. Detection, tracking (counts), and species classification 

algorithms are currently available; however, these algorithms would need to be expanded to 

include the following: 

• Fate Disposition: Determination of whether catch items were retained, discarded by the 

crew, dropped off the gear. 
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• Crew Activity (monitoring for illegal on deck actions). 

• Depredation by marine mammals and other predators. 

• Gear Performance (gear entanglement, parted lines, loss of gear). 

• Handling of prohibited species (halibut viability and release method). 

 

For these analysis activities, training, input, and annotation requirements will need to be 

defined with each function being a separate research target. Therefore, annotation software is 

currently being updated to include depredation, fish retention, halibut release method, halibut 

injury, the location of target (on the line, in water, in air), sex, and gear type information. 

The current detection, tracking, and classification algorithms will also need to perform at 

an acceptable success rate before they can be integrated into production. Additionally, the EM 

systems currently in use by the fleet (to collect imagery for standard review) are monocular 

camera systems; to obtain length estimation for these types of systems, the algorithms will need 

to be adjusted. Adaptation of Rail algorithms for use with monocular cameras is currently being 

researched. Testing activities with production data will be crucial to achieve implementable 

results. 

While the EMI Rail algorithms are still under development, the current goal is to package 

and release them under the open-source model to encourage open collaboration. This package 

would also require applications and guides for algorithm model retraining and annotation 

protocols. 

 
3.5.2 Rail Camera System - Implementation and Collaboration 
 

Lowering the costs associated with the collection, transfer, storage, and analysis of event-

based image data allows for greater fisheries monitoring rates over a wider range of vessel types 

and sizes, particularly those vessels where it is impractical to place an observer. By leveraging 

the latest developments in computer vision, cost-effective and timely extraction of scientific data 

from images will provide greater certainty for resource management and support sustainable 

fishing practices. 
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In developing the EM Rail system, the focus has been on designing and deploying 

durable stereo camera systems for data collection. Technological advancements in GPU 

processing for running machine learning algorithms have increased since the start of the project, 

with newer GPU components becoming available with greater processing abilities while 

requiring less power to operate. Integration of these low powered GPUs into the EM Rail system 

would allow for integration of algorithms to reduce data storage, report image quality issues in 

real time, speed up review times by identifying fish catch events in advance, and could even at 

some point lead to the reality of real-time catch accounting data analysis. Currently, the fan-less 

waterproof PCs deployed as part of the EM Rail system do not have this ability and therefore 

real-time cloud computing would not be a suitable solution; vessels that will use these systems 

will not have access to continual dedicated internet connectivity in the near future. Additional 

research needs to be conducted to develop the best practices for this integration, balancing and 

benchmarking the tradeoffs of performance against component costs. 

Before the Rail camera system can be integrated into the current pool of monitoring 

options available, additional hardware and software development will be required. The current 

EM Rail System relies on use of a specific type of stereo machine vision cameras that can 

acquire the imagery required for fish length estimation based on stereo imagery. The data 

collected via this system has been invaluable in the development of the length estimation 

algorithm for the fish caught at the rail. However, in its current form the EM Rail system is 

impractical to deploy at a scale appropriate for fisheries monitoring. Research is being conducted 

to make use of less costly components with this in mind, switching from expensive machine 

vision cameras to IP and Raspberry Pi cameras. 

Traditional EM systems used in fisheries for compliance monitoring make use of single 

view IP cameras, capturing lower resolution images at lower frame rates than the EM Rail 

system. Processing the data from these systems through the algorithms developed for the Rail 

system gave us a better understanding of implementation trade-offs for the EM Rail system. If 

these trade-offs are acceptable, then the EM Rail system can switch to an IP camera strategy. 

Likewise, length estimation algorithms for use with imagery collected using monocular camera 

systems are currently being researched (using existing stereo camera imagery). If the existing 

length estimation algorithms can be adapted for use with monocular camera images, then the EM 
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Rail system can switch to a single camera strategy that more closely resembles the current EM 

monitoring systems. 

Research should continue into the development of robust haul start and end sensors. 

Testing and implementing an automated computer vision region-of-interest trigger would prove 

to be a better trigger than the electrical sensors currently deployed. 

Improvements in communication and data transmission components should also be 

investigated. When real-time processing becomes a reality, there will be a need to transmit the 

resulting information from the vessel to EM data managers as quickly as possible to allow for 

use in in-season quota monitoring. Application development will be required to integrate these 

results into existing data streams. 

 

3.6   EMI Rail Summary 
  

In summary, the goal of this research was to develop algorithms for automating the 

detection, tracking, estimated length, and species identification of fish caught on fixed gear 

vessels. This is a challenging task due to the complexity of the imagery from the algorithm’s 

perspective; deformed and bending fish makes identification and length estimation difficult due 

to the multitude of variations that can occur. The lighting conditions and background with the 

fish silhouetted against is also complex and changes throughout the collections. 

To accomplish this task, dedicated EMI rail systems were iteratively built and deployed 

to collect needed training imagery. The camera system deployments had to overcome 

environmental challenges including power restrictions and electronic robustness. Many 

challenges were overcome, and successful data collection deployments were achieved. Training 

imagery consists of multiple species types, multiple angles of the catch, and stereo imagery for 

length estimation. A considerable proportion of the training imagery was annotated for detection, 

tracking and identification purposes. 

Algorithms were developed and have achieved high accuracy in detecting, tracking, and 

identifying the predominant Alaskan species. The track identification accuracy of: Pacific halibut 

was 98.3%; spiny dogfish 98%; sablefish 96.7%; and grenadier, 93.2%. Overall accuracy of less 
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common species can improve with additional training imagery. Stereo-derived length 

measurements were achieved; however, further development will be required to refine length 

estimation algorithms. 

Since the project’s initiation, deployments of EMI rail systems in the field have become 

standard for image acquisition, with custom strategies in continued development for precise 

fishing activity monitoring and post-processing of imagery. Current commercial EM systems 

designed to collect video data for later human review are simple in nature compared to the stereo 

camera systems built as part of this research stream. The developed algorithms are being 

investigated for use in commercial EM imagery review as an automated ‘pre-reviewing’ of the 

data collected by these systems, but current predictions are not robust enough to be useful for 

optimizing human review time at this time. Images from the commercial systems need to be 

incorporated into the currently available Rail algorithms to improve predictions, and this is the 

step where commercial vendors can take our base open-source algorithms and customize it as 

desired for their proprietary review product. To achieve this, priority focus will be given to 

further testing the existing algorithms and establishing training dataset baselines to complement 

the release of open-source algorithms. These baselines will establish the retraining requirements 

of the detection, tracking, and classification datasets and subsequent annotation labeling will be 

conducted on this production data. Further algorithm development to address additional 

requirements such as automating the detection of fate disposition and depredation by marine 

mammals has also been initiated. While the EMI Rail algorithms are still under development, the 

goal is to package and release these in their current form under the open-source model, with 

descriptions of successful annotation and training techniques, to encourage open collaboration. 

Direct integration of algorithms into commercial systems is dependent on the algorithms being 

made publicly available  

For an integrated real-time automated EM system capable of species identification, length 

measurement, and at-sea transmission of data to be ready for deployment into the Alaska fixed- 

gear fisheries our team plans to 1) adapt existing (or create new) single camera algorithms for 

species identification and length measurements 2) data transmission protocol development needs 

to be completed, and 3) full-system field testing needs to be completed inclusive of in situ data 

verification studies. 
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4.   SPECIES DETECTION, IDENTIFICATION, AND MEASUREMENT  
-- CONTROLLED ENVIRONMENTS 

 

Many of the difficulties encountered in the rail environment can be reduced for other 

electronic monitoring applications by controlling lighting and fish orientation to the camera. 

Variation in the imaging environment, particularly lighting and background, complicates image 

analysis for species classification by creating uncertainties as to whether different colors and 

patterns are due to fish characteristics or lighting differences. Differences in fish posture and 

orientation to the camera can be similarly problematic. Image analysis for fish classification or 

measurement were simplified by enclosing the imaging area and limiting lighting to consistent 

artificial sources, as well as reducing pose and orientation variability by imaging the subject 

against a flat, monochrome surface. Applications where fish can be counted, identified, and 

measured by being passed through an imaging enclosure include monitoring discards where 

retained catch components are accounted for during delivery or where measurements of 

particular species need to be made before they are returned to the ocean.  

   

Such EM applications depend on supplying sufficient images to train classification 

models to recognize the relevant fish species. Species classification imagery was collected 

aboard the AFSC Gulf of Alaska and Aleutian Islands trawl surveys in 2015, 2016, and 2019, 

providing images of a wide range of groundfish and invertebrate species for training classifier 

algorithms. The wider the variety of species and the more images of those species that can be 

used to train the algorithm, the better it will perform. Figure 21 below shows the iterative 

development cycle for species classification in a controlled environment. 
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Figure 21. -- Schematic of the development lifecycle for species classification and measurement 
in controlled environments. 

4.1   Controlled Environments - Data Collection Camera Systems 

To collect imagery for the number of distinct species needed to train the classification 

algorithm, initial collections of these images occurred during the AFSC Gulf of Alaska and 

Aleutian Islands trawl surveys. Three camera systems were used to collect the needed imagery. 

In 2015, fish were slid through a sloped enclosure (chute) and single images were acquired of 

those fish using machine vision cameras (MVChute). To assess the potential of separating light 

frequencies, the 2016 system was a Multispectral System, which used multiple cameras, each 

sensitive only to a narrow light frequency range, and LED lighting providing those frequencies. 

Those systems were configured as a ‘photo booth’, where each fish was placed in a box, posed, 

and a photo was manually triggered. The 2019 system (VideoChute) used an Internet Protocol 

(IP) camera to capture a video sequence of each fish as they passed through a chute from one end 

to the other, allowing for the rapid collection of live fish imagery. These systems are collectively 

called enclosed camera systems (Fig. 22). 



46 

Chute style 
system deployed 
in 2015 - Fish 
are sent into one 
end and out the 
other end, 
sliding over a 
sloped surface – 
(MVChute) 

Multispectral 
imaging system 
deployed in 
2016 – Fish is 
placed one at a 
time in an 
enclosed box – 
(Multispectral 
System) 

Figure 22. -- Schematic depicting the three enclosed camera systems, Machine Vision 
(MVChute) Multispectral System, IP video (VideoChute). 
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Chute style system 
deployed in 2019- 
Fish are sent into 
one end and out 
the other end, 
sliding over a 
sloped surface – 
(VideoChute)  

Figure 22. Continued. -- Schematic depicting the three camera chute systems (Multispectral, 
Machine Vision, IP.) 

Table 10. – Descriptions of camera chute system design requirements. 

Design requirement Description 

4.1.1 – Camera 
Requirements 

A range of MV and IP cameras, lenses and filters were used. 
Wide angle lenses were necessary, due to the proximity of 
cameras to fish. Multispectral system used filters to limit 
sensitivity to narrow frequency slots The enclosures need to 
exclude external light, allowing artificial lights to provide 
consistent imagery. Chutes required bright lighting to allow 
fast exposures of moving fish. 

4.1.2 – Autonomous 
Collection 

The multispectral photo booth used manual triggering, while 
the camera chutes were triggered automatically.  



48 

4.1.3 – Environmental, Size 
and Maneuverability 
Limitations 

Deployments aboard fishing vessels put a premium on camera 
systems occupying minimal volumes. 

4.1.4 – Deployments Deployments during AFSC trawl surveys provided a wide 
range of species under more controlled conditions than during 
commercial fishing. 

4.1.1 Camera Systems 

Several requirements led to the design, development and deployment of these collection 

systems and are outlined in Table 10. Machine vision (MV) cameras, like those used in the stereo 

EMI Rail system (see Section 3.1.1), were used in the initial chute designs (Fig. 23). Enclosures 

excluded external light and light arrays provided very bright white lighting, allowing rapid 

exposures of rapidly moving fish. The chutes’ floors were rigid plastic sheets, providing a 

contrasting background for imaging. With the acquisition software already having been 

developed for the cameras on the Rail system, the same software was incorporated into the 

camera chute design to acquire imagery of fish as they were passed through the chute. The 

software was modified to capture the single, triggered images taken by those systems. For further 

details on the evolution of these chute designs see Section 5 which describes their deployment as 

halibut bycatch chutes. 

Machine Vision Camera Chute System evolution 
Figure 23. -- MV camera chute (MVChute) systems design, showing the progressive design 

evolution (upper three panels). 

2014 2015 2016 
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Figure 24. -- An example of an acquired image from the MVChute. 
 
 
 

To explore the potential of combinations of specific light frequencies to improve fish 

species identifications, a specialized system was built with seven cameras, each of which was 

equipped with a slot filter limiting it to a narrow light frequency band. There was also one 

unfiltered camera. A dedicated lighting source was added to provide enough light power at 

specific frequencies sampled, as well as the broad band camera (Fig. 25). Fish placed in the 

enclosure were stationary during imaging, allowing longer exposures than the two camera 

chutes. This Multispectral System was deployed during the AFSC 2016 trawl survey of the 

Aleutian Islands area. Multiple fish species images were collected and provided along with 

identification data to develop and test species identification algorithms using the multi-frequency 

data. Results of that development and testing indicated that the multi-spectral information only 

marginally improved species identification accuracy. Given the complexity of the multispectral 

chute, data, and analysis, this development direction was not pursued further. However, the data 

collected from the multispectral camera chute was beneficial for seabird experiments that were 

conducted (see Section 8: Seabird Species Identification Experiment). Figure 25 shows the 

multispectral camera setup.  
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Lens filter values 

applied to the 

machine-vision 

cameras  

Multispectral camera array - 8 cameras 

with different filters mounted above 

surface 

Multispectral system enclosure – LED light 

strips were mounted around the upper sides (not 

visible) 

Example of rockfish images captured with the Multispectral system and onboard operation 

B A 

C D

E F 

Camera array 

G 

Figure 25. -- Multispectral Imaging System showing camera array (A), imaging booth (B), and 
examples of acquired images using different frequency bands (C-F) and onboard 
operation (G). 

As the algorithms evolved, tests with reduced resolution determined that image resolution 

requirements (megapixel size) could be relaxed from those initially conceived (from 2.8 to 0.7 
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megapixels). This allowed for the implementation of IP cameras instead of the dedicated 

machine vision cameras used in previous development stages. This in turn allowed for 

application development to shift from dedicated purpose-built camera systems to standard, off-

the-shelf IP cameras. A video surveillance-type IP camera was implemented into a chute design 

for 2019 species image collections during the AFSC survey (Fig. 26). This system recorded 

video as opposed to still image frames. Multiple images also provide more opportunities for 

accurate classifications and measurements. This system proved to be the simplest in terms of 

usability, durability, and ease of use. 

 
IP camera chute build and finished design 

 
Example of a salmon image captured with the IP camera chute 

Figure 26. -- Portable IP camera chute system design showing a side view of the uncovered chute 
(upper left), the full (covered) chute (upper right), and an example of an acquired 
image (lower). 

 
 

System usability is dependent on the environment in which a camera chute system is 

deployed. In the case of the Multispectral System, this system would typically be used in a 

controlled environment with no power or size restraints with a full monitor, keyboard and mouse 
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attached. This is not the case for the other chute systems, where they could be used in the field 

where time and physical space will be limited. These chutes require autonomous image 

acquisition and must conform to certain design restrictions such as power and size limitations. 

4.1.2 Autonomous Collection 
 

These camera systems required devices to trigger the cameras to acquire images. Because 

the operator of the Multispectral System posed each fish, a manual trigger was used. The 

MVChute was triggered by a light beam interruption sensor near the chute’s exit. However, the 

durability and consistency of these sensors was insufficient, producing false triggers, missed 

triggers and system failures. For the Video Chute, autonomous collection was triggered by built-

in motion detection capabilities of the IP camera, with time buffers before and after motion 

detections to assure all fish passage events were fully recorded.  

 
4.1.3 Environmental, Size and Maneuverability Limitations 
 

The size of the camera chutes needed to conform to the specific environment (vessel) 

where they are being deployed and space is often limited aboard fishing vessels. To reduce 

enclosure volume, cameras were placed above the exit end of the chutes, providing an oblique 

view, and requiring less enclosed space than mounting the camera directly above the center of 

the chute. The MVChute would typically be affixed to the side of the vessel, with fish passing 

through it sent back into the ocean. This required the physical design of this chute having to 

support environmental issues such as water proofing components and enduring vibration issues. 

This chute system was also not ideal for spontaneous image collection as the setup requires 

secure installation. The VideoChute, however, was smaller and lighter, and easily moved around. 

Since there were no sensors on this chute, it was also easier to maintain. 

For the reasons outlined above it was determined that the VideoChute was the best chute 

design for quick autonomous species classification data collection. However, the lessons learned 

from the Multispectral System and MVChute were still invaluable when developing and 

deploying all camera chute systems. 
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4.1.4 Deployments 
 

Species classification imagery and associated length and species data were collected 

aboard the AFSC Gulf of Alaska and Aleutian Islands trawl surveys in 2015, 2016, and 2019 

(Table 11). For all these deployments, an onboard scientist was responsible for selecting fish 

after the survey sampling was complete to put through the chute. Fish were put through the chute 

in species groups, as they had already been sorted. The scientists recorded which species were 

put through in which order and the lengths of selected fish.  

 
Table 11. -- Survey deployments by year with numbers of species and images or video clips 

collected. 
 
Year Deployments System Notes 
2015 FV Alaska Provider  MV camera chute 58 species, 18,815 total 

specimen images  
 

2016 FV Alaska Provider Multispectral camera 
system 

145 species, 6,740 total 
specimen images  

2019 FV Ocean Explorer 
 

IP camera chute 88 species, 888 total 
specimen video clips  
 

 
 

4.2   Controlled Environments - Annotation 
 

Annotation requirements for the species classification algorithm were quite different from 

those for the Rail system. There were no requirements for detection or tracking, as each fish only 

had a single image. Annotation for species classification for controlled environment images only 

required fish species identifications and these were recorded by scientists during the survey. As 

survey image collections used fish that had been pre-sorted for survey purposes, fish were put 

through the imaging system in same-species batches, with species recorded for each batch. 
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4.3   Controlled Environments - Algorithm Development 
 
4.3.1 Species identification 
 

To perform species classifications on fish image sets from our controlled environment 

enclosures and Cam-Trawl (Williams et al. 2010) imagery, Wang et al (2016) developed a two-

level codebook algorithm. This unsupervised classifier uses two steps to identify the most 

informative features to discriminate between species. The 2016 multispectral image set was one 

of the examples used in their paper. While the single-image collections from 2015 and 2016 did 

not require detection or tracking, the videos from 2019 did require those processes. Detection, 

segmentation, and tracking used similar processes to those processes already described for the 

rail analyses, albeit much simplified by the controlled environment (e.g., 2D tracking instead of 

3D).  

 

4.3.2 Length measurement 
 

Measuring fish lengths from images of fish sliding over a well-lit monochrome surface 

reduces or eliminates many of the problems encountered for the rail analyses. However, several 

problems remain, including locating the nose and tail measuring points, adjusting for camera and 

perspective distortions, and following the curve of fish that are not posed in a straight line. 

Huang et al. (2016) developed an effective algorithm to measure fish lengths from images of fish 

placed on a calibrated flat surface. This algorithm rectified the image, segmented the fish from 

the background, and located the fish midline through recursive morphological operations on the 

segmented fish outline (Figure 27).  
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Figure 27. -- Method to measure lengths of fish from images (Huang et al. 2016) 

 

4.3.3 Active learning 
 

In applying a species classifier to fisheries monitoring, new image sets could have 

enough differences from the training set that performance would be significantly degraded. 

Active learning is a case of machine learning in which a learning algorithm can interactively 

query a user to label new data points with the desired outputs. Unlabeled data are often abundant 

but manual labeling is usually expensive. This is the scenario for fish species classification for 

fisheries monitoring where there will be lots of unlabeled images of fish compared to the 

manually labeled training dataset. In such a scenario, learning algorithms can actively query the 

user for labels. This type of iterative supervised learning is called active learning. Wang et al. 

(2019) developed an active learning algorithm that indicates which images would most improve 

the classification model if identifications were provided by a reviewer. The algorithm then 

retrains the model by including those identifications. 
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Figure 28. -- Schematic showing the active learning model.  

 

The framework for this classification model is depicted in Figure 28 above. Starting in 

the lower left of the image, labeled data are used to train the classifier which, in turn, is evaluated 

against a testing data set. The classifier is used with an unlabeled dataset to classify images to 

(predict) species, and based on a sample of the predictions, the labeled dataset is updated, and the 

model retrained. First, a multi-class classifier is initially trained on the labeled data. A trained 

classifier is then applied on the unlabeled data. Based on the classifier predictions, sparse 

modeling via Gaussian kernels is used for sample selection. These selected samples are then 

labeled and moved from unlabeled sets to labeled sets. At the end of each iteration, the classifier 

is re-trained with the updated labeled set. Finally, the performance of active learning is evaluated 

on an independent testing dataset. 

 

4.4   Controlled Environment Algorithms - Review and Results 
 

4.4.1 Species Identification 
 

The classification algorithm was trained and tested with 6,740 images from the 2016 

survey (Wang et al. 2016). Testing was done with 10-fold cross validation, excluding all testing 

images from the training used to predict their classification. Separate classifiers were trained 
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with a combination of the seven images from the narrow-frequency-band, filtered cameras and 

with the unfiltered camera alone. The multispectral classifier produced results with 97% 

accuracy at identifying 42 taxonomic classes, plus an ‘other’ class for species with < 20 images 

(Table 12). Identification accuracy was affected by how many images were available for each 

species and whether species were similar in appearance (e.g., arrowtooth and Kamchatka 

flounders). The classifier trained on images from the unfiltered color camera performed with a 

very minimal accuracy reduction (94%). Given the complexity of the Multispectral system, its 

further use was not pursued.  

Table 12. -- Species included in the 2016 classification training dataset along with the number of 

identified images used in the initial training model and the accuracy of 

classifications from the resulting model (Wang et al. 2016, see Section 4.4). 

Common name Scientific Name
 Number

 Accuracy 
(%)

Common name Scientific Name
 

Number
 Accuracy 

(%)
Northern Rock Sole Lepidopsetta polyxystra 753 100 Sea Urchin Strongylocentrotus sp. 57 98.3
Kamchatka Flounder Atheresthes evermanni 553 91.5 Dover Sole Microstomus pacificus 55 87.3
Flathead Sole Hippoglossoides elassodon 511 98.2 Prowfish Zaproridae 54 90.7
Arrowtooth Flounder Atheresthes stomias 436 88.1 Sablefish Anoplopoma fimbria 50 100
Rex Sole Glyptocephalus zachirus 433 98.6 Mud Skate Bathyraja taranetzi 48 91.7
Northern Rockfish Sebastes polyspinis 385 99.7 Scissortail Sculpin Triglops forficatus 47 78.7
Atka Mackerel Malacocottus zonurus 307 100 Brown King Crab Lithodes aequispinus 45 68.9
Walleye Pollock Gadus chalcogrammus 280 100 Poacher Leptagonus frenatus 44 79.6
Darkfin Sculpin Malacocottus zonurus 279 98.9 Armorhead sculpin Gymnocanthus galeatus 42 95.2
Pacific Ocean Perch Sebastes alutus 227 98.7 Giant Grenadier Albatrossia pectoralis 40 100
Pacific Cod Gadus macrocephalus 223 97.8 Ebony Eelpout Lycodes concolor 34 85.3
Shortspine Thornyhead Sebastolobus alascanus 213 99.5 Golden King Crab Lithodes aequispinus 33 66.7
Yellow Irish Lord Hemilepidotus jordani 193 97.4 Toad Lumpsucker Eumicrotremus phrynoides 32 87.5
Shortraker Rockfish Sebastes borealis 154 100 Basket star Gorgonocephalus eucemis 31 100
Black Spotted Rockfish Sebastes melanostictus 139 96.4 Pacific Octopus Enteroctopus dofleini 31 80.7
Red Squid Berryteuthis magister 131 100 Sea cucumber Cucumaria fallax 27 92.6
Searcher Bathymaster signatus 97 94.9 Sturgeon Poacher Podothecus accipenserinus 24 62.5
Spectacled Sculpin Triglops scepticus 76 92.1 Leopard Skate Bathyraja panthera 22 36.4
Dusky Rockfish Sebastes variabilis 67 95.5 Black Rockfish Sebastes melanops 21 61.9
Bubblegum Coral Paragorgia arborea 61 95.1 Harlequin Rockfish Sebastes variegatus 21 76.2
Pacific Halibut Hippoglossus stenolepis 59 88.1 Whiteblotched Skate Bathyraja maculata 20 30

Other 385 78.2  

4.4.2 Length measurement 
 

Huang et al. (2016) compared 3,571 automated length measurements from images taken 

during the 2015 survey with manual measurements of the same fish taken onboard during 

collection (Table 13). Overall mean absolute errors were 1.49% of the measured length. While 
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the maximum error rate was 2.7% for Pacific ocean perch, all but 3 of 11 species had error rates 

at or below 1.5%.  

 

Table 13.-- Mean absolute error (%) of automated measurements of groundfish. 

 
Mean 

Common name Scientific Name Number absolute 
error (%)

Arrowtooth Flounder Atheresthes stomias 722 1.7
Flathead Sole Hippoglossoides elassodon 450 1.1
Pacific Cod Gadus macrocephalus 282 1.1
Pacific Halibut Hippoglossus stenolepis 213 1.3
Pacific Ocean Perch Sebastes alutus 156 2.7
Rex Sole Glyptocephalus zachirus 178 1.5
Shortspine Thornyhead Sebastolobus alascanus 210 2
Southern Rock Sole Lepidopsetta bilineata 316 1.5
Walleye Pollock Gadus chalcogrammus 839 1.3
Yellow Irish Lord Hemilepidotus jordani 71 1.1
Yellowfin Sole Limanda aspera 134 1.1

3571 1.49  

 

4.5   Controlled Environments - Rockfish Identification Experiment 
 

With the accuracy of rockfish identification proving to be quite high, a separate model 

specifically for rockfish species identification was developed and tested for species that field 

biologists misidentify at higher rates. Specialized imagery collections (beyond those conducted 

on trawl surveys, Table 14) were completed for three rockfish species with remarkably similar 

appearances, blackspotted rockfish, rougheye rockfish, and shortraker rockfish (Fig. 29), 

including genetic sampling to assure accurate identifications. As these species can be difficult to 

distinguish in the field, they are grouped as part of observer program visual identification 

policies to ensure accurate collections. The lighting and background were tightly controlled to 

allow consistent levels across light spectrums in the multispectral chute. Fin clip samples were 

collected from all imaged fish and analyzed for genetic markers to verify accurate species 

identification. Over two survey periods, 1 Hybrid, 55 shortraker rockfish, 104 rougheye rockfish, 
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and 130 blackspot rockfish were imaged with the species identification verified by genetics. 

These species can be difficult for trained scientists to distinguish in the field.  

 
Table 14. -- Specialized annual rockfish deployments conducted as part of the rockfish 

identification experiment and summary of images collected. 
 
Year Deployments Notes 

2017 Auke Bay Sablefish 
Survey (FV Alaska 
Leader) 

blackspotted, shortraker and rougheye rockfish. 1,050 
images with paired genetics (Multiple images of the same 
specimens collected) 

2018 Auke Bay Sablefish 
Survey (FV Ocean 
Prowler) 

blackspotted, shortraker and rougheye rockfish. 124 
images with paired genetics 

2019 Observer collected 
specimen 

blackspotted and shortraker and rougheye rockfish. 14 
images with paired genetics 

 

 

 
blackspotted rockfish 

(Sebastes melanostictus) 

 
shortraker rockfish 
(Sebastes borealis) 

 
rougheye rockfish  

(Sebastes aleutianus) 
 

Figure 29. -- Examples of rockfish species images from the controlled environment (chute) 
camera systems. 

 
The goal was to evaluate the controlled environment species identification algorithm to 

identify similar looking species. If successful, it can be used on other difficult to distinguish 

species, such as juvenile arctic cod and juvenile pollock, while out in the field by observers or by 

scientists on research cruises to augment or expand collections. Images collected during these 

deployments were annotated and 60% were randomly selected for training the model with the 

remaining 40% reserved for testing for accuracy (Table 15). Testing resulted in 93% accuracy of 

species identification of the testing are depicted in the confusion matrix in Table 16. A confusion 
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matrix is a table that is used to describe the performance of the classifier on a set of test data for 

which the true values are known. The results indicated that tight control over lighting and 

background combined with a low number of classes allowed for a relatively small training set for 

these species.  

Table 15. -- Rockfish species dataset. 

Rockfish species # Training 

images 

# Testing 

images 

blackspotted rockfish (Sebastes melanostictus) 305 77 

rougheye rockfish (Sebastes aleutianus) 
 

166 42 

shortraker rockfish (Sebastes borealis) 217 55 

Totals 688 174 

 

Table 16. -- Testing results for the rockfish identification experiment. The matrix of labels 

predicted by the algorithm against actual species identification (true label) using the 

rockfish classification test set. Overall accuracy of predictions was 93%.  

  Predicted label 

 
 

Blackspotted Rougheye Shortraker 

T
ru

e 
la

be
l Blackspotted 

98.7% accurate 
76 1 0 

Rougheye 
76.19% accurate 

3 32 7 
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4.6   Controlled Environments: Species Identification - Discussion, Operational Readiness and 
Summary 

 

The development of a species identification algorithm is one of the underlying tenets of 

research conducted by EM Innovation. This algorithm has many potential applications. As a 

standalone program incorporating different training datasets, the algorithm can be used in 

various situations where species identification from images is needed. As an integrated solution 

for real-time species identification, the algorithm can be incorporated into a camera system such 

as the camera chute systems that were designed for this research. The species identification 

algorithm also has the potential to be applied to other research areas such as species 

identification of discarded bycatch, or species identification on a processing plant belt or where 

fish are caught at the rail. In all cases, training datasets will need to be defined for the specific 

purpose. 

 
4.6.1 Standalone Application 
 

As a standalone application the fish species identification classifier can be applied to a 

multitude of research efforts where fish identification is a requirement. The application approach 

can now be utilized with other species by collecting an image data set, selecting a percentage for 

training and testing, and increasing the training as needed to refine the model and achieve the 

desired results. An example of such efforts would be the Rockfish experiment as mentioned in 

Section 4.5 where species identification is needed for species that are similar visually. 

In its current form, the species identification classifier was developed as a set of Python 

scripts for use in a MS Windows® environment. These scripts were run as part of the training and 

testing of the algorithm and can be released to the community for further development. Release 

of this type will require formal documentation and rights management.  

To operate effectively as a standalone application that can be used by non-technical 

researchers, the scripts will need to be integrated into an application with intuitive user 

interfaces. This can either be in the form of a desktop application running natively or as an online 

browser-based application hosted with cloud computing capabilities. Both options have their 

own benefits and shortcomings: a desktop application would allow for running of the algorithms 
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in the field where internet coverage is not available while a browser-based system would allow 

for lower system requirements and be more available to users. 

Whichever development path is chosen, this application will need to clearly indicate 

which training datasets are used and how to train new datasets so that the application is useful in 

new research situations. The current training dataset is based on species from the Alaska region 

and therefore, further training will be required to adapt the algorithms to identify species from 

other regions. Due to the nature of the active learning model, this retraining should not require a 

major number of resources; further testing and analysis of the existing algorithm scripts will 

inform this determination. 

  
4.6.2  Integrated Real-time Species Identification Camera System 
 

Integrating the species identification classification algorithm(s) into a camera 

hardware/software system will allow for real-time identification of fish species in the field in a 

controlled environment. An image of the fish can be captured and immediately analyzed 

provided certain input criteria are met, such as clear backgrounds, adequate lighting etc. 

Integrating the algorithms back into the camera acquisition systems used to collect the training 

data would allow for real-time identification. As a fish slides through the chute, it can be 

analyzed and identified. This ‘Species Identification Chute’ would be beneficial for automated 

bycatch monitoring and reporting. 

A specialized version of this kind of bycatch monitoring system was developed 

specifically for a single species, halibut (see Section 5). The halibut bycatch chute is an example 

of an integrated real-time system, extending this for use with the species identification classifier 

would allow for automated reporting of various species. To achieve this type of system, 

application development is planned for a standalone species identification application capable of 

running on the chute camera system PC with further research and development to add to length 

estimation reporting. The purpose of this Species Identification Chute would be to collect fish 

imagery to be analyzed by a species identification classifier and fish measurement tools, thereby 

providing automated species composition and length data on monitored trips. Physical hardware 

development conducted for the Halibut bycatch chute can be used in this endeavor; however as 

with development of the application, baseline training datasets will have to be acquired and 



63 
 

algorithms will need to be retrained where appropriate. Tools for labeling and retraining will 

have to be effectively communicated and tested before this can be achieved. 

 
4.6.3 Applying the Species Identification Classifier in Uncontrolled Environments 
 

      
Figure 30. -- Examples of different species in uncontrolled capture environments on the rail and 

in open air chute-like capture poses and uncontrolled lighting and backgrounds 

 
                      

Research is currently being conducted for species identification in uncontrolled 

environments for chute-like images of fish on tables without lighting and background control. 

Images and genetic samples of the rougheye, shortraker, and blackspot rockfish species group 

are currently being collected by observers during commercial fishing operations. These images 

will be tested on the model and verified with genetic identifications (Section 4.5) to assess if it 

can perform as well without strict background and light controls in place without a complete 

retraining effort. A new model trained with salmon images with the same algorithmic approach 

will also be tested in an uncontrolled lighting environment to identify salmon sorted at 

processing plants to species after the belt detector described in Section 6 has detected the salmon. 

The salmon in the experiment will be placed flat on a table to capture images for the species 

identification model. 

The model developed for chute images cannot be applied directly to rail images because 

the training images between the two image types are much too different to have the models 

directly transfer. Species identification of fish caught at the rail of fixed gear vessels (Section 3), 

presents an uncontrolled background and lighting environment, and hence have proven to require 
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more training images to achieve accurate identification to species. For species identification at 

the rail, a specialized classification model was developed with a training dataset of 17 classes, 

but with the success of the chute’s active learning model a similar strategy is planned for the rail 

applications.  Applying the active learning classifier model strategy on the Rail data has the 

potential to expand species identification beyond these initial classes by automatically training 

the model with newly learned classes. Without active learning the Rail classification model 

would have to be completely re-trained for any new class. The concurrent development of 

species identification models for controlled chute and uncontrolled rail images has made clear 

that training data utilized for any application must have similar complexity in terms of 

background and lighting to the image data targeted for analysis.  

5.   HALIBUT BYCATCH COUNT AND LENGTH ESTIMATION – TRAWL FISHERY 
 

Bycatch of Pacific halibut is an important management issue for most Alaska trawl 

fisheries and is difficult to monitor with precision, particularly for individual vessel bycatch. 

Therefore, it was an application pursued earliest for the controlled-environment chutes described 

in Section 4. Halibut are required to be returned to the sea quickly. The length-weight 

relationship for halibut is well established, so measuring and counting halibut discarded through 

a chute would provide good data on the weights and numbers discarded.  

For Bering Sea bottom trawl fisheries, vessel-specific halibut bycatch mortality can be a 

limiting criterion. Vessels participating in that fishery can sort halibut from catches (deck-

sorting) before transferring those catches into holding bins to release halibut sooner and reduce 

their mortality with requirements to assure that the weight and condition of the released halibut is 

recorded (https://www.federalregister.gov/documents/2019/10/15/2019-22198/fisheries-of-the-

exclusive-economic-zone-off-alaska-halibut-deck-sorting-monitoring-requirements-for). The 

EMI project has been developing and testing camera chutes to automatically measure such 

halibut as they are released during deck-sorting. 

During deck-sorting operations, the codend is opened on deck and halibut are sorted out 

for release as catch is moved to holding bins. Deck-sorting is monitored by observers who must 

leave factory sampling to occupy on-deck stations where they sample halibut as they are 
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released. This stops processing lines and takes time away from other observer duties. An 

automated alternative for this monitoring of deck-sorting activity would be the implementation 

of a camera chute system with integrated machine vision algorithms to estimate the halibut 

bycatch lengths from images taken as halibut are released through the camera chute. Mortality 

can be estimated using the time of halibut release (time out of water) and would be recorded by 

the system. Deployment of these chute systems would expedite handling with halibut returning 

to the ocean sooner.  

 

Figure 31. -- Schematic showing where the halibut bycatch chute fits into the deck sorting 
process; catch is brought on deck (in the codend) and halibut are sorted from the 
catch and discarded through the EMI halibut bycatch chute. The remaining catch is 
stored in holding bins before being transferred to the vessel’s factory where the 
observer samples the catch before it is processed. 

 
 

The first halibut bycatch chute system was built and deployed in 2014. Since then, chutes 

have been deployed nine more times on volunteer catcher-processor (CP) vessels conducting 

deck-sorting operations. (This included operations under an exempted fishing permit as deck-

sorting methods were developedand since the regulations implementing the deck-sorting 

program were adopted). Chute systems were installed on deck between the observer sampling 

table and the discard chute. Deck-sorted halibut were passed through the chute for image 

collection and processing as the halibut were discarded. Imagery collected from these 

deployments was used to train and test the halibut length measurement algorithms. The main 

application goal for these chutes is to enable rapid discard and enumeration of deck-sorted 

halibut in support of on-board observer data collection and halibut bycatch estimation. The figure 

below summarizes the iterative research cycle of that EMI chute system. 
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Figure 32. -- Research cycle for the halibut bycatch chute. 
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5.1   EMI Halibut Bycatch Chute System - Camera System 
 

The design for the halibut bycatch chute follows on from the camera chutes developed for 

data collection activities. Halibut are passed through the chute as they are sorted from the catch 

on-deck and discarded back to the ocean. While passing through the chute, imagery is captured 

of the fish (Fig. 33). The system consists of a metal box, a camera, light panels, and computer 

components. 

 

Figure 33. -- Halibut bycatch chute system. 
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The halibut bycatch chute system has been iteratively designed, building upon the lessons 

learnt from development of other camera chute systems. Design requirements specific to the 

halibut chute are listed below in Table 17. 

 
Table 17. -- Descriptions of halibut bycatch chute camera system design requirements and 

constraints.  

Design requirement/Constraint Description 

5.1.1 - Hardware Requirements and  
            Environmental Constraints  

The halibut chute needs to withstand the outdoor 
deck environment in the trawling industry. 

 

5.1.2 - Image Acquisition and Image 
Quality 

Images need to be clear for halibut measurement, 
including halibut fish shape algorithms. Consistent 
background required for background segmentation. 
Lighting must be bright enough to allow fast 
exposures, keeping images of sliding fish clear.  

5.1.3 - Autonomous Collection and  
            Integrated Real-time 

Algorithm  
            Analysis 

As the halibut is discarded through the chute it 
needs to be recorded. The only action that is 
required from the observer or crew is to pass the fish 
through the chute. Image analysis occurs as the 
halibut is discarded through the chute. 

 
5.1.1 Hardware Requirements and Environmental Constraints  
 

The original halibut bycatch chute paralleled the MVC chute design seen in Section 4. 

The chute is typically affixed to the side of the vessel, with fish passing through it sent back into 

the ocean. As the chute would be deployed at sea in the open on the deck, the build needs to 

withstand these environmental conditions. Early deployment of the MV camera chute to function 

as the halibut bycatch chute led to vessel personnel indicating that chute size, particularly height, 

would be a problem on many vessels. This MV camera chute was also not sustainable for long 

trips with water and light intrusion issues becoming more prevalent the longer it was deployed. 

The redesign included fabricating an aluminum body and reducing the chute dimensions 

(Fig. 34). Height was reduced by putting the camera above the exit end of the chute, instead of 

above the center. This oblique view puts the camera directly above the fish snout, which is 



69 
 

commonly several cm above the chute surface, which would cause an overestimate of length 

from the central position. Water intrusion that damaged electronics was solved by identifying the 

sources of the intrusion and components and replacing them with waterproof computers (the 

same model used in the rail system in Section 3.3). Moving to a solid enclosure helped address 

the light intrusion issues as did adding rigid entry and exit door panels with rubber edge flaps. It 

was also discovered that occasionally fish could stick to the floor of the chute depending on the 

angle at which the chute was installed and on the nature of the fish. To make it easier for the fish 

to slide through the chute, a rinse water hose was installed to wet and wash down the chute floor 

making it easier for fish to move through the chute. The chute redesign also addressed 

vibrational issues which were causing electrical connections to fail or become intermittent by 

deploying dedicated solid state circuit boards and soldered or screw-down/clamping connections.  

 
 
Figure 34. -- Evolution of the physical chute design showing the design improvement from the 

early MV camera chute (left) to the halibut bycatch chute design (right). 

 
5.1.2 Image Acquisition and Image Quality 
 

The camera deployment strategy used in the MV camera chutes was adopted for the 

halibut bycatch chute deployments. MV cameras used in the stereo rail system were deployed 

using a modified version of Rail Acquisition software application to acquire the images. The 

camera is installed in a fixed position within the enclosed chute which meant the camera 

housings did not require the same intensity of waterproofing as that of the Rail system. The 
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camera is connected to a waterproof PC and separately provided 12-volt power. A light beam 

interruption sensor was connected to the PC as well and, when triggered, a signal was sent to the 

camera to strobe the lights and acquire an image. Because these chute systems were deployed on 

larger vessels, the power restrictions were not as restrictive as those encountered on vessels for 

the Rail system, and thus the camera and PC could be left powered on throughout the duration of 

the trip. Lighting power was minimized because lights were triggered as rapid strobes. 

While this strategy was able to acquire images, there were significant challenges that had 

to be overcome. The sensor was vulnerable to water intrusion over periods of weeks to months, 

largely because they had to be installed at the exit end of the chutes where they were exposed to 

substantial amounts of water. This resulted in either missed triggers or a significant amount of 

false triggering which in turn would clog the PC storage system with wasted images. 

Maintaining image quality over the duration of a trip was also challenging using this camera 

system. Keeping the settings of the camera coordinated over prolonged periods of time was 

difficult due to the MV cameras rebooting and reverting to their factory settings. Fixed camera 

settings that were optimal when the chute was deployed could also become poor when lighting 

partially failed and resulted in images with inconsistent clarity and color. 

Camera faceplate fouling was also an issue (see Fig. 35 for examples). Soiling of the 

camera viewport occurs over time due to water spots and flapping fish. Fish flapping was strong 

enough to move the camera, which invalidated calibration and reduced views of the chute floor. 

Water drops are regularly splattered onto the camera port, clouding parts or all of the image. A 

blower was installed to blow air at the camera port, triggered by the fish passage sensor, and 

while it did remove water drops it also left a salt film residue. Freshwater spray was partially 

effective when combined with a blower.  

Maintaining consistent lighting was also difficult. Overhead lighting created strong 

reflections on chute surfaces. Placing strips of LEDs close to the chute surface along the sides 

prevented most reflections. Painting all interior surfaces white augmented reflected light. Light 

needed to be strong enough to allow image acquisition durations below 1/500 sec to limit motion 

blurring. The painted chute bottom surface began to peel over time, hampering object detection 

algorithms. To overcome paint peel, colored plastic sheets were used instead of paint allowing 

for more longevity and durability. Additionally, green plastic was selected to replace blue floor 
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color it provided a brighter background for subtraction and was available in a more durable 

sheeting. 

 

Bright and clear (Optimal 
condition) 

 
Camera fouling 

 
Camera color inconsistency 

 
Light panel drop out 

 
Paint peel 

 
Total fouling 

 
Figure 35. -- Examples of various physical issues occurring in image acquisition ranging from no 

issues (clear view, upper left) to a totally fouled view (lower right). 
 

As the halibut chute and associated algorithms evolved, tests with reduced resolution 

determined that image quality requirements (megapixel size) could be relaxed from those 

initially used (from 2.8 to 0.7 megapixel). This meant dedicated MV cameras could be replaced 

with IP-type cameras. This was a significant breakthrough since standard off-the-shelf cameras 

and IP camera acquisition software could be used. These types of IP cameras are typically used 

in surveillance systems and have built-in motion detection triggers. This availability combined 

with the elimination of the complexity of the light beam triggering system was a substantial part 

of the decision to change to IP cameras. 

Software issues to implement a system based on IP cameras were addressed by moving away 

from the custom-built image collection application and making use of the open-source video 



72 
 

surveillance application iSpy to control and acquire the needed imagery. This in turn led to more 

consistent image acquisition and offered more control in terms of camera settings. 

The IP cameras continuously monitor for movement in the chute, providing a live view of what 

the cameras are seeing. Adding a feedback monitor screen to the system allows the vessel 

operators and system users to see when the camera faceplate needs cleaning. This makes 

cleaning of the interior of the chute easier since the effect of cleaning the chute floor and 

faceplate can be seen on captured imagery. Images in Figure 36 below depict the IP camera 

installation in the chute as well as the video monitor as well as an example of a video frame 

captured through the camera in Figure 37. 

 

 
Camera faceplate 

 
IP Camera position in  

the chute

 
 

Feedback monitor

 

A B 

C 

Figure 36. -- View of camera plate from inside the chute (A), IP Camera installation (B), and the 
feedback monitor showing an image of the chute interior (C). 
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Figure 37. -- Image captured with the improved IP camera version of the halibut bycatch chute 

 
5.1.3 Autonomous Collection and Integrated Real-time Algorithm Analysis with IP cameras 
 

For the halibut bycatch chute to be effective, it needs to be able to operate without obstructing 

the current duties of the observers and the discard activities should also not be slowed. Fish 

should be sent through the chute with minimal effort from the user. The user operations should 

be limited to turning the light panels on, passing the fish through the chute, and turning the light 

panels off at the end of sorting activities. During early deployments, the observer entered their 

manually measured halibut lengths into our system using a keypad, but this proved to be 

cumbersome, and the keypad electronics eventually failed from water intrusion. Keeping the 

observer-measured lengths and the automated estimated lengths matched for a single halibut was 

also challenging. 

As the development of the detection, tracking, segmentation, and length estimation of the halibut 

improved, it became feasible to integrate the algorithms directly into the camera chute system, 

allowing on-board analysis during image collections. Initial integration of IP video into the 

acquisition application proved difficult since an application interface had not been developed., 

and the algorithm classification code had been directly incorporated into the MVChute 

acquisition application. As the algorithms were refined and newer versions became available, the 

IP system could not be easily updated. Attempts were made to develop integrated algorithms 

with IP camera acquisition software, but this method proved too restrictive. Instead, it was 
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decided to develop a workflow control application that would pass the imagery from the 

acquisition application to the standalone algorithm application (Fig. 38). This method allowed 

for more flexibility, catering for both image and video files to be able to be recorded and for 

those files to also be processed in parallel using multiple instances of the algorithm application 

independent of the camera.  

While the length estimation occurs in near real-time using this method, analysis of the collected 

data can only occur once the results are available to fisheries analysts. Designs were considered 

that increased how quickly and easily the results could be transferred. Provision was made for 

the transfer of the length estimate results from the chute system PC to the onboard observer’s PC 

via USB transmission. Once on the observer PC, these results were added to the observer data 

transmission application (ATLAS) and transferred to ASFC FMA databases together with 

standard observer data. This proof of concept design is under review for further analysis. 

 

Figure 38. -- Schematic of the integrated acquisition and analysis design using workflow 
orchestration. 
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5.1.4 Deployments 
 

From 2014 to 2020 halibut bycatch chute deployments were made on 14 trips aboard seven Gulf 

of Alaska catcher vessels and during 12 extended (2 weeks – 3 months) sessions aboard four 

Bering Sea catcher-processors. (Table 18). 

Table 18. -- Summary of halibut bycatch chutes deployments. * indicates Bering Sea 
catcher/processors, no * indicates Gulf of Alaska catcher vessels. Numbers in 
parentheses refer to the number of deployments made that year, if more than one. 

Year Deployments Notes 

2014 • FV Constellation* Proof of concept 

2015 • FV Arica* Data collection, vessel operator feedback, hardware 
development and automated analysis - MVChute 

2016 • FV Katie Ann* 
• FV Laura 
• FV Marathon (3) 

Data collection, vessel operator feedback, hardware 
development and automated analysis - MVChute 

2017 • FV Arica* 
• FV Cape Kiwanda (3) 
• FV Elizabeth F 
• FV Excalibur 
• FV Marathon (3) 
• FV Nichole 
• FV Sea Mac 
• FV Seafreeze 

America* 
• FV Topaz 

Data collection, vessel operator feedback, hardware 
development and automated analysis - MVChute 

2018 • FV Arica* 
• FV Marathon 
• FV Nichole (2) 
• FV Seafreeze 

America* 

Data collection, vessel operator feedback, hardware 
development, and automated analysis - MVChute 
image frames 

2019 • FV Arica (2)* Data collection, vessel operator feedback, hardware 
development, and automated analysis - VideoChute 
collection on second deployment 

2020 • FV Arica* 
• FV Seafreeze 

America* 

Data collection and automated analysis, trial system for 
data transfer - VideoChute 
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5.2   Halibut Bycatch Chute Annotation 
 

Halibut length-measurement algorithms were based on differentiating fish from the background 

(segmentation) and calibration geometry, assuming that halibut were in full contact with the 

chute surface. However, some fish could not be accurately measured, as the halibut were bent or 

parts were above the chute surface due to the fish flapping as it passed through the chute. To 

identify when this occurred, some annotation was needed to identify images where fish position 

or posture prevented accurate measurement from the image. Several parameters were extracted 

from image segmentations, including total area, tail area, boundary length, and width and ratios 

of these were tested to see which best identified images from which length measurements were 

inaccurate. The ratio of tail area to total area found most of those images, as flapping fish usually 

had tails closer to the camera, hence appearing much larger. Later, the ‘Fit Ratio’ from the 

halibut shape fitting algorithm (see Section 5.3.3) provided better discrimination of images likely 

to be inaccurately measured. Annotation was also important to identify image segmentations 

affected by problems such as material on the chute surface or droplets on the camera lens. 

Segmentation parameters were adjusted, and the shape-fitting algorithm was developed to 

minimize the effects of such problems on length measurements. Ground-truth testing was done 

by comparisons with observer measurements of each halibut.  

 

5.3   Halibut Bycatch Chute Algorithm Development 
 

The computer vision algorithms aim to count and estimate length of each halibut as it passes 

through the halibut bycatch chute. To do this, the algorithms needed to segment and separate the 

detection from the background and then to measure its length. When there were multiple images 

of each fish (video), the algorithms also needed to detect the fish in each image frame and track 

the movement of that fish from one frame to another before segmentation (Fig. 39; Table 19). 
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Single 

image 

Video 

Figure 39. -- Schematic depicting the steps involved in automated halibut length estimation from 
input of video or images (upper left) through a series of algorithms, to output of 
final results. 

 
 
 
Table 19. -- Description of algorithms used in estimation of halibut length and count; additional 

details can be found in the referenced sections. 

Research deliverable Description 

5.3.1 - Camera Calibration Adjusts images for perspective and any camera or lens 
distortions. This results in a calibration parameter file 
used during fish measurement and identification.  

5.3.2 - Halibut Detection and 
Tracking  

Tracks the detected halibut from one frame to another  

5.3.3 - Segmentation, Shape 
Prediction and Length 
Estimation 

Distinguishes fish from chute background to isolate fish 
information for further analysis. This process determines 
where the fish is in each frame from individual images or 
video. 
 
Extrapolates the shape of halibut detected in the frame. If 
there is only a partial view of the halibut, the process 
estimates the shape of the full fish. 
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5.3.1 Camera Calibration 
 
The calibration algorithm adjusts the images for perspective and any camera or lens distortions, 

providing a calibration parameter file for fish measurement and identification. With calibration 

parameters, rectified images can be produced having a consistent relationship between pixel 

dimensions and real-world dimensions across the imaged surface and in all directions, allowing 

accurate measurements and consistent fish shapes. The calibration algorithm derives the camera 

matrix and its relationship to the chute surface from images of a board with a checkerboard 

pattern with known dimensions that is moved across the whole chute surface. Collections of such 

calibration images were completed before the systems were deployed. Any changes in the 

camera view relative to the chute surface invalidate the calibration parameters, so additional sets 

of calibration images, a two-to-five-minute process, were taken periodically during and after 

deployments.  

 
5.3.2 Halibut Detection and Tracking  
 
When used as halibut bycatch chutes, MVChutes did not require detection and tracking, as only a 

single image was taken of each fish. As VideoChutes provided video clips, including multiple 

images of each fish, their use required detection and tracking algorithms. A Gaussian Mixture 

Model (GMM) is used for detection and tracking objects in the video imagery. GMMs have been 

used extensively in object tracking of multiple objects where the number of mixture components 

and the mean of the mixture components predict object locations at each frame in a video 

sequence. For tracking, bounding box detections from the GMM detector are connected if their 

overlapping Intersection-over-Union (IoU) is above the threshold. IoU is an evaluation metric 

used to measure the accuracy of an object detector on a particular dataset. As there is only one 

fish per frame in previous data, this detection and tracking is quite straight forward. The images 

in Figure 40 depict the detection and tracking of a halibut in a video recorded within a halibut 

bycatch chute. 
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Figure 40. -- Detection and tracking example. Frames are transposed relative to camera 

calibration. 
 

5.3.3 Segmentation, Shape Prediction and Length Estimation 
 

Segmentation and measurement of early image collections used the methods developed in Huang 

et al. (2016) and described above in Section 4. While these methods were effective for most fish 

images, major challenges identified with some fish segmentations included: images blurred due 

to water drops on the camera lens, some part of the fish body outside of the camera view and 

fouling or glare on the chute surface being mistaken for part of the fish. These issues motivated 

development of an algorithm that fit the segmentation outline to general halibut shapes, allowing 

well-segmented sections to overcome segmentation flaws. 

For the algorithm requirement, a coarse-to-fine contour-based method for segmentation 

refinement and missing body recovery for chute-based halibut images was developed. Several 

segmentation approaches were applied to the raw fish images to get the initial segmentation 

mask which is then treated as the input for the developed refinement system. At the beginning, 

the initial segmentation contour is aligned with pre-trained representative contours using an 

affine transform, constituting the coarsest level for entire contour alignment. Then the contour 

segments are refined iteratively to represent the poorly segmented or missing portions of the 
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testing image (Fig. 41). From coarse to fine, the segmentation refinement progressively focuses 

more on local parts of the fish, allowing for more variation of the fish shape (Wang et al. 2018). 

 

Figure 41. -- Schematic showing the fish shape prediction and recovery algorithm process 
starting with initial segmentation through to estimation of the final contour of the 
imaged fish. 

 
 
 
Measuring the fish size and length requires a robust segmentation approach which was generally 

well-accomplished by the shape-fitting algorithm. The Huang et al. (2016) length-measurement 

algorithm derived lengths by locating the tip of the snout, the middle point of the tail, and 

generating a series of line segments between the two with intermediate points located along the 

middle of the fish shape. The simplest and most accurate method for halibut was found to be 

using only a single intermediate point at the center of the narrowest part (caudal peduncle) of the 

segmented fish profile and adding the lengths of the two line segments between that point and 

the snout and the tail. The halibut length estimation algorithms produced an output csv which 

includes the video file reference, a reference to the time on the video, the estimated fish length, 

and a Fit Ratio (Fig. 42). Low Fit Ratio (< 0.65) identified fish that could not be reliably 
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measured due to bad segmentation or pose. For image ID 2 (Fig. 42), images of the input image 

and recovered shape are given in Figure 43.  

 
Figure 42. -- Example of algorithm CSV output showing a sample of halibut length estimation 

csv file showing the video filename, image ID, time references, estimated length, 
and fit ratio. 

 
 

 

Original video frame 

 

Output analysis rectified 
for perspective 
(calibration), shape 
recovery (red outline) 
and length estimation 
(purple line) 

Figure 43. -- Example photos showing input image and final recovered shape and estimated 
length. 
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5.4   Halibut Bycatch Chute Algorithm Review and Results 
 

The success factors for the development and implementation of algorithms for automated halibut 

bycatch length estimation are two-fold: 

1. Measuring accuracy results. The algorithm results need to be accurate to a certain 

measure of confidence. The measure of accuracy is determined by how closely the output 

length measurements are compared to measured lengths. 

2. Measuring processing performance results. The processing time needed to run the 

algorithms should not be longer than it takes to manually review and extract the needed 

data. The measure of processing performance is determined by the processing time 

benchmarks for running algorithms and determined by how long it takes to run an 

analysis application, relative to a human review. 

 

5.4.1 Halibut Bycatch Algorithms - Accuracy Results 
 
The initial study conducted to evaluate the halibut bycatch chute camera system demonstrated 

that the algorithms could achieve highly accurate length estimates (Fig. 44). In 2014, 183 halibut 

were deck sorted, measured, and discarded through a camera chute deployed aboard the FV 

Constellation. Comparing the ground truth measurements to the automated length estimates 

demonstrate that image-based measurements a) produce similar estimated length compositions 

across the full collection, b) are highly correlated and c) have low error and minimal bias (Fig. 

44). The mean difference between image-based length estimates and measured lengths was 0.07 

cm, with a standard deviation of 0.85 cm. Seventy-nine percent of fish measured from images 

were within 1 cm of the physical measurements. Error rates did not appear to be length 

dependent. The system performed equally well regardless of whether the eyed (dark) or blind 

(white) side of the halibut was presented (mean difference for individual fish = 0.13 cm) 

(Wallace et al., 2015). 
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A 
B 

C 

 

 

Figure 44. -- Comparisons of halibut bycatch chute (image-based) length estimates relative to 
onboard physical length measurements for 183 halibut from 2014 deployment 
aboard the FV Constellation; frequency distributions for estimated (blue) and 
measured (green) lengths (A), estimated and measured lengths were close to equal 
(B), and histogram of differences between estimated length and measured length 
with mean difference of 0.07 cm and standard deviation of 0.85 (C). 

 
Data were analyzed from collections during a two-month deployment aboard the FV Arica in the 

fall of 2017, where halibut were deck-sorted and discarded through a halibut bycatch chute and 

onboard observers collected measurements for about 20% of the discarded halibut. Halibut 

images with Fit Ratios below 0.65, indicating segmentation errors or poses that would produce 

high measurement errors, were eliminated from the analysis. In practice, the sizes of such fish 

would need to be inferred from the remainder of the collection. This provided 498 observer 

measurements for comparison with measurements obtained through the length estimation 

algorithms. The shape-fitting algorithm was used for segmentation and greatly improved 

segmentation and measurements for images with lighting, clarity, and fish-position issues. 

Nearly all measurement errors were smaller than 2 cm. original images had 2.8 megapixel (mP) 

resolution. However, after image resolutions were reduced by half in both dimensions (0.72 mP) 

and then by half again (0.18 mP) before analysis, length measurement accuracies were 

unchanged, indicating that high resolution images are not necessary for this application. 
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Comparisons of algorithm estimates with actual measurements show similar length distributions, 

with regression analysis showing greater than 96% of variance explained and an average 

difference for image measurements of less than 0.5 cm (Fig. 45). Further analysis of observer 

measured lengths compared to the automated analysis for 2019/2020 (the first years of IP camera 

chute data) is ongoing. 

 

  

 
        

Figure 45. -- Comparison of 498 image-based and observer-measured halibut length 
measurements from the FV Arica between September 8 to November 5, 2017  
(90 images (15%) with Fit Ratio less than 0.65 had been eliminated). Frequency 
distribution of estimated (blue) and measured (green) lengths (A), regression of 
estimated lengths against measured lengths showing R2 and regression equation (B), 
and histogram of errors (differences between estimated and measured length (C). 

 
5.4.2 Halibut Bycatch Algorithms - Performance Results 
 

Halibut bycatch algorithms were packaged into a single executable application. The input to the 

application is either a list of images or a video file. Processing time is based on the number of 

images or frames in the video; with shape fitting, processing takes a few seconds to process each 

image, on a computer without dedicated GPU processing. As each fish provides 4-8 images, 

processing can be faster or slower than halibut arrive, depending on the sorting operation. This 

allows for the algorithms to be integrated directly on the camera PC with analysis usually 
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occurring directly after the images are acquired. If a new video is acquired while analysis is still 

being conducted, that second video gets placed in a queue to be analyzed once the original is 

completed. The performance results and the relatively low processing power for running the 

algorithms allows for this near real-time analysis. As deck-sorting occurs only once for every 

haul and lasts less than 30 minutes, and hauls take hours to be completely processed, there would 

be time to complete analyses before the next haul is sorted.  

 
5.5   Halibut Bycatch Open Air Detection 

 

Implementing the halibut bycatch chute can be cumbersome for vessels with limited space on 

deck and eliminating the enclosure could improve acceptance and implementation. Such ‘open-

chutes’ have been tried in other projects including EFP 2007-02 (Bonney 2008) and initial trials 

for UW’s Advanced Physics Laboratory (APL) (Brodsky 2017). The EMI team advised the UW 

APL on later stages of their project that used an enclosed chute. Challenges with open-air chutes 

have included obstruction by arms and hands of personnel, and the highly variable lighting 

conditions, including shadows and glare, encountered on deck with the open chutes (Figure 46). 

Overcoming these issues is possible, however more work is needed to fully develop this 

potential.  

To evaluate such an alternative, video was collected in 2019 to investigate the possibility of 

obtaining lengths in an uncontrolled open-air environment. Vessels conducting halibut deck-

sorting were required to have video cameras monitoring the sorting process, including cameras 

viewing the tables where observers collect data on sampled halibut. Video from an IP camera 

monitoring the sorting process was acquired from a vessel (FV Cape Horn) which had a close 

and unobstructed view of their sampling table. Sorting of two hauls were recorded and used for 

demonstration and feasibility trials and preliminary algorithm development. Detector training 

required annotation of bounding boxes around the halibut. Initially a small batch of annotation 

labels were created for demonstration purposes. More extensive annotations were completed but 

those bounding box labels have not yet been used for training the model. Approximately 17,775 

images were separated for annotation purposes and 2,228 rectangular bounding boxes were 

created. Preliminary algorithms were successful at detecting and tracking the halibut even with 
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considerable interference from the observer’s hands, arms, and sampling equipment, which 

rendered standard segmentation tools (separating background from foreground) ineffective. 

Developing this configuration toward implementation would require trials over a wider range of 

lighting conditions and testing the application of shape fitting tools to measure those halibut. 

While open-air chutes may prove feasible, further pursuit of this project has been deferred in 

favor of work with more controlled environments.  

 
Figure 46. -- Image of a halibut detection on an open-air table and showing the bounding box for 

the detected halibut. 
 

 

5.6   Halibut Count and Length Estimation Discussion and Operational Readiness 
 

Halibut counting and length estimation systems have been developed to acquire and analyze 

image data on the vessel. Analysis results can be transmitted to and fed into the data reporting 

stream for timely catch accounting analysis. While this real-time analysis has been developed, 

the analysis communication methods and the integration of transmitted data with management 

systems still needs to be designed and tested. Improvements in both collection and analysis 

systems will emerge from ongoing deployments and will need to be incorporated into future 

designs for implementation into the fisheries. 

Implementation strategies will need to be defined for both the EMI analysis algorithms and EMI 

controlled environment camera system before any production implementation can take place. 
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These strategies should define how algorithms will be run in the field and how they will scale 

across fisheries. 

 
5.6.1 Halibut Count and Length Algorithms - Implementation and Collaboration 
 

Halibut counting and length measurement algorithms have been thoroughly developed and 

tested, using IP video clips triggered by motion detection, with objects being detected as they are 

acquired and stored, and routed to the analysis routine. Vessels conducting halibut deck-sorting 

are already required to have cameras installed and there are established vendors that provide and 

maintain those IP systems. Instead of introducing a new stand-alone system, implementation 

could be efficiently achieved by integrating the analysis capability developed here alongside 

existing video collection systems, with an IP camera in the chute set for motion detection and 

added to the data collection array. Length measurements would be converted to weights and 

summed to provide the needed estimates of halibut weight discarded from the deck. 

Collaboration with vessel video vendors would be needed to find the best way to link analysis 

capabilities with their systems. The proportion of halibut that could not be measured would be 

assigned the average weight. Prototype tools have been deployed that provide these weight 

estimates onboard and transmit data to the AFSC for use in management. These prototypes will 

need to be improved and tested for full implementation. 

 
5.6.2 Halibut Count and Length Camera Systems - Implementation and Collaboration 
 

While the IP camera would be a component of the vessel’s video monitoring system, the camera 

chute has many other important characteristics needed for effective discard monitoring. These 

include an enclosure to exclude exterior light, artificial lighting arranged to illuminate the chute 

surface without reflections or glare, a chute surface that allows easy fish passage and a good 

background for segmentation, fish entrance and exit openings to allow fish passage but exclude 

external light, and supports to protect, position, and orient the camera to the chute surface. The 

current chute design achieves all of these but may not be optimal for installation on every vessel. 

Providing functional requirements, the example of the current system, and availability of project 
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personnel to answer questions would allow vessels to adapt the chute to their vessel and sorting 

procedures. Specific operational procedures are also critical to chute function, including 

monitoring the camera port for drops or other fouling and cleaning when needed. 

 
5.7   Halibut Count and Length Estimation - Summary 

 

The ability to automatically count and measure halibut as they are being discarded would replace 

a time-consuming observer task on Being Sea vessels conducting halibut deck-sorting operations 

and would make vessel-specific bycatch monitoring more precise should such management be 

implemented for partial-coverage or limited-discard fisheries. Sophisticated, robust algorithms 

have been developed and proven for measuring halibut for both single-image and video 

collections. While analysis tools have developed quickly, maintaining system operations for 

months in the challenging, at-sea environment has been the main roadblock to a system ready for 

implementation. The shift from sensor-triggered single images to motion-triggered video 

collection with IP cameras has advanced system durability. These are the same challenges and 

advances experienced for the species identification chute. 

While the halibut-measurement application of the camera chute is mostly developed, several 

EMI tasks are necessary before implementation, including the following: 

• The code for the algorithms needs to be made available to potential users and 

documented. 

• Collaboration with vendors that supply video systems to the Bering Sea fleet is needed to 

determine how best to link the analysis code to their video-collection systems. 

• A thorough and specific list of necessary chute characteristics needs to be developed and 

communicated to fleet participants, followed by any consultation needed to help them 

design and install chutes on their vessels. 

• The 2020 deployment results need to be analyzed. 

• A paper documenting the accuracy of chute-generated weight estimates, needs to be 

prepared for publication in a peer reviewed journal and provided to both fisheries 

management and fishery participants. This is needed to achieve buy-in and to justify the 

necessary implementation and approval efforts. 
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Halibut bycatch mortality is a driving consideration for many of the management decisions made 

for Alaska marine fisheries and a significant limitation for many of those fisheries. The camera 

chutes developed by EMI provide an efficient alternative for measuring halibut discards. They 

can also measure the time of air exposure for each halibut, which is a significant factor affecting 

the probability of mortality (Rose et al. 2019). The most immediate application of halibut 

bycatch chutes would be the deck-sorting operations of Bering Sea bottom trawl fisheries, but 

they would also be applicable to Gulf of Alaska bottom trawlers, should their management be 

shifted to require accounting of halibut bycatch at the vessel level. While further advancements 

such as the open-air chute could make a measurement chute easier to deploy, these chutes have 

thus far only shown potential at every preliminary level. More development and testing would be 

necessary if those directions were indicated to be useful, as well as acceptance by the relevant 

fleet and fisheries management and incorporation into their systems and operations. 

 

6   SALMON DETECTION AND TRACKING - TRAWL DELIVERY PLANTS 
 

Observer monitoring for bycatch, particularly for salmon, in catcher vessel deliveries at shore 

side processing plants is time-consuming, tedious, and is done in parallel with the sorting 

conducted by plant workers. This monitoring situation was identified as having potential for EM 

detection and associated species identification algorithms to be used to validate the plant’s 

sorting process. In 2018 and 2019, imagery was collected by deploying IP cameras and making 

use of cameras already available at four plants in Kodiak. These monitored the flow of catch 

from rockfish-predominant deliveries into the sorting area and at a designated location where 

salmon were presented when sorted from the catch. To increase the number of training images, 

marked salmon were inserted into the flow of fish, in addition to the salmon bycatch in those 

deliveries. Analyses were developed to monitor the plant personnel’s ability to accurately detect, 

sort, and report salmon bycatch in deliveries from trawlers. Videos were also collected from a 

few deliveries of walleye pollock at one Kodiak plant in February 2019 to develop detection 

models to separate salmon from pollock catches. The brief pollock collection mostly used 

salmon introduced into the catch. If EM can successfully validate that plant sorters remove all 

salmon from deliveries and correctly account for them, salmon bycatch can then be monitored 
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and salmon counted with delivery tickets already being created and reported by the plants, 

alleviating the observer workload (see Fig. 47 for the research development cycle). 

 

 

Figure 47. -- Schematic showing the research cycle for detecting and tracking salmon in 
processing plants (on a conveyor belt system). 

 

 
6.1   Salmon Detection and Tracking on Plant Belts - Camera System 

 

The objective of the camera system in fish processing plants is to validate industry salmon 

bycatch reporting. Analysis of ‘Entry’ video detects salmon contained in trawl deliveries as the 

fish move on a belt into the sorting area of the processing plant. In addition, images are acquired 

by using a ‘Check-In’ camera that salmon are placed under when they are sorted from the catch 

by plant personnel. Salmon sorting efficiency can be estimated as the proportion of salmon 

detected by analyzing Entry belt video that are soon thereafter detected on the Check-In video. 

This does not require all salmon in the delivery to be detected in the Entry belt video. Check-In 

salmon images are also required for training the machine learning algorithms that will automate 

species identification. For salmon identification, multiple images of different salmon species 
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were required. Images were initially acquired with the IP camera chute in 2018 (see Section 4.1) 

and collected from designated locations near the sorting belt in 2019. IP surveillance type 

cameras, attached to network video recorders, were placed in the sorting plants with views of the 

moving belts (Fig. 48). Correct species identification is evaluated by comparing automated 

identifications with salmon reported on the industry reports (plant’s fish ticket) for each delivery. 

 

 
Figure 48. -- Diagram showing delivered catch on a processing plant belt system and salmon ID 

camera placement. Salmon bycatch are light grey while other fish species in the 
catch are colored black. IP cameras and video recorders are placed above the 
conveyor belts. 

 
 
 
6.1.1 Data Collection for Salmon Detection 
 
The training data consists of video imagery of salmon moving on the plant belt together with 

other species of fish, namely rockfish and walleye pollock which are separated into image frames 

for annotation (Figure 49). For data collection, IP camera network video recorder systems were 

installed at participating plants in 2018 and 2019 (Table 20). 
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Table 20. -- Summary of salmon detection data collections in shoreside processing plants over a 
3-year period. 

 

Year Plant Delivery type Total images 
extracted 

2018 Processing Plants 1, 2, 3, 4 Rockfish 1,106,983 

2019 Processing Plants 1, 2, 3, 4 Rockfish 1,180,148 

2019 Processing Plant 1 Walleye Pollock 222,327 

 

 
 
Figure 49. -- Belt image extracted from video collected by a camera system in a shoreside 

processing plant showing industry personnel sorting salmon from a delivery of 
rockfish. 

 
 
Data that was collected as part of the species identification algorithm development in Section 4.1 

was used for development of salmon species identification algorithms. 

 

6.2   Salmon Detection and Tracking on Plant Belts - Annotation 
 

Two types of labeled datasets are needed to develop algorithms for monitoring salmon sorting 

and identification: salmon detection in rockfish and pollock deliveries and salmon species 

identification. Image frames from video acquired from the plants were extracted and annotated. 

The total number of images per video determined the annotation sample section. Two types of 

belt videos were annotated: salmon in rockfish deliveries and salmon in pollock deliveries. 
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Annotation was completed using LabelImg with 34,666 rectangular bounding boxes created for 

salmon detected in rockfish deliveries. For salmon detection in pollock deliveries, a total of 

222,327 images with 33,225 rectangular bounding boxes were created (Fig. 50). 

 
Figure 50. -- Photo extracted from video recording of a pollock delivery in a shoreside 

processing plant. The bounding box in the center of the image (shaded blue) shows 
an annotated salmon detection. 

 

Salmon species ID annotation was conducted as part of the controlled environment species 

identification stream (Section 4.2). Salmon specific annotation consisted of identifying and 

cataloging salmon tails and salmon bodies to species (Table 21).  

Table 21. -- Listing of the total number of salmon annotations per year and application type. 

Year Application Images reviewed 
# of Bounding 
boxes 

2018 Salmon Plant Belt 23258 11,454 
2019 Salmon Plant Belt 523069 79,345 
2015 Salmon ID Chute Tail 156 156 
2015 Salmon ID Chute Body 156 156 
2018 Salmon ID Chute Tail 29 28 
2018 Salmon ID Chute Body 29 29 
2019 Salmon ID Chute Tail 49501 893 
2019 Salmon ID Chute Body 49501 1,616 
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6.3   Salmon Detection and Tracking on Plant Belts - Algorithm Development 
 

The goal of the detection and tracking computer vision algorithms developed for processing 

plants is to detect salmon from multiple species of fish moving on a belt and record the time that 

each salmon passed. To accomplish this the algorithms need to be able to detect the fish in the 

image frame and track the movement of the fish from one frame to another (Figure 51). Another 

algorithm classifies salmon appearing on a second camera to species and record the times that 

those fish appear. Research for this classification makes use of the species identification 

algorithms developed in Section 4.  

 
Figure 51. -- Schematic showing salmon detection and tracking algorithms, data inputs, and final 

output. 
 
The detection algorithm is based on the Faster Region-based Convolutional Neural Network 

(RCNN) method for higher accuracy and for robustness. Faster RCNN is an object detection 

architecture and uses convolution neural networks like YOLO (You Only Look Once) and SSD 

(Single Shot Detector). Faster RCNN is composed from three parts, convolution layers, a Region 

Proposal Network (RPN), and classes and bounding boxes prediction. 

For the tracking, the initial approach made use of DeepSORT, a tracking-by-detection algorithm 

that considers both the bounding box parameters of the detection results, and the information 

about appearance of the tracked objects to associate the detections in a new frame with 

previously tracked objects. However, this learning-based tracking algorithm is more suitable for 

unpredictable trajectories and clustering is offline and slow. 

A new tracking algorithm TrackletNet Tracking (TNT) was applied to automatically use the 

frame rate information from the video input file to adjust thresholds and the overall confidence to 
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filter tracks. In this framework, detections are associated based on the CNN appearance-feature 

similarity and overlapping between frames. After achieving passage-based tracking results, video 

visualizations and results in csv format are available for users in the post-processing step (Fig. 52 

and 53. 

 

Figure 52. -- Photo images from cropped input video showing salmon detection and tracking; 
green bounding boxes show a detected salmon as it is tracked (top to bottom). 
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Figure 53. -- Example of algorithm CSV output showing a sample of salmon detection and 

tracking output file (csv file) including the video frame rate and track ID. 
 

The salmon identification algorithm was trained on 162 images of chinook and chum salmon, 

with 55 images held for testing. These image sets were assembled from multiple collections and 

lighting differences between collections complicated the discrimination of full body images. 

Images limited to the tails were found to provide better separation, with only one of the 55 

testing images misclassified (one Chinook predicted as chum) for a 98.2% accuracy. An 

algorithm to isolate salmon tails from salmon images was developed for use with the salmon 

classification algorithm. 

 
6.4   Salmon Detection and Tracking on Plant Belts - Algorithm Review and Results 

 

The success factors for the development and implementation of algorithms for automated salmon 

detection and tracking in a plant environment are twofold: 

1. Measuring accuracy results. The algorithm results need to be accurate to within a 

predetermined measure of confidence.  

2. Measuring processing performance results. The measure of processing performance is 

determined using the processing benchmarks for running algorithms and the time needed 

to run the analysis application. 
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6.4.1 Salmon on Belt Algorithm - Accuracy Results 
 

Salmon detector algorithms had false positive detections when analyzing individual frames and 

each salmon passage generates several frames. To overcome these issues, tracking routines were 

developed to exclude frame detections that were not part of a sequential series of detections and 

to combine frames from each salmon into a single event. Focusing on tracks greatly reduced the 

number of false positives. The initial detector detected about 70% of the frames with salmon 

when applied to rockfish deliveries and less than 40% when applied to pollock deliveries (Table 

22). That algorithm was too slow to consider real-time analysis, so a faster version that also 

incorporated detection improvements was developed in 2020. That version increased recall and 

precision at both frame and track levels, except for a drop in the precision of track detections in 

rockfish deliveries from 98% to 90%. A slower tracking algorithm (TNT) improved those 

detections to 95%.  

Table 22. -- Training and testing results for detecting and tracking salmon in rockfish and 

pollock deliveries. 

Delivery 
species 

Algorithm Frame 
annotations 

Frame 
recall 

Frame 
precision 

Track 
annotations 

Track 
recall 

Track 
precision 

Rockfish Initial 4,194 68.3% 73.2% 85 74.1% 98.4% 

Rockfish Fast 4,194 77.3% 77.2% 85 94.7% 89.5% 

Pollock Fast 8,917 54.1% 88.2% 85 76.1% 73.1% 

 

For species identification, algorithms focusing on salmon tails distinguished Chinook salmon 

from chum salmon with 92.8% accuracy with images from a range of collections, including 

controlled environment chutes. Further development and research will be needed to achieve 

these types of results with imagery from new views or plants. 
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6.4.2 Salmon on Belt Algorithm - Performance Results 
 

The salmon detection and tracking algorithm application makes use of dedicated GPU 

processing. Performance was improved by skipping real-time visualization, removing video to 

image conversion and ROI cropping, and setting a detection interval that skips frames until a 

detection occurs and then examines all the next 20 frames. With the latest version, 2,391 s video 

with 15 frames per second (36k frames) took 265 s to process, while an 850 s video with 20 fps 

(17k frames) took 336 s. While this range of 11% to 40% of processing time to running time 

ratios indicates considerable variation, both being much less than running time indicates real-

time detection may be feasible. However, further testing of the application with in-plant 

installations is needed to establish real-world performance benchmarks. 

 

6.5   Salmon Detection and Tracking on Plant Belts – Discussion, Operational Readiness and 
Summary 
 

EMI developed species detection and species identification algorithms to validate the plant 

personnel’s bycatch sorting of catcher vessel deliveries at shore side processing plants. These 

algorithms provide verification of industry bycatch sorting and processing, allowing bycatch 

reports from plant fish tickets to be used to monitor salmon bycatch. This could replace time 

consuming and tedious delivery-belt-monitoring by observers that is done in parallel with the 

plant’s sorting or salmon sampling aboard catcher vessels. In this system, one camera detects 

most of the salmon entering the sorting area. Sorters put all salmon under a second camera, 

which confirms that all detected salmon are sorted and identifies the species of all salmon. 

Placement of these two cameras and recording of their video streams would be a minor addition 

to monitoring systems that most plants already have in place. Recordings from both cameras can 

be triggered by motion detection to limit storage and processing. 

EMI work needed to proceed toward implementation includes running the existing algorithms on 

video collected from 2018, 2019, and from real-time collections during fishery deliveries. 

Opportunities for these real-time trials include deliveries in the rockfish and pollock fisheries, 
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either in Dutch Harbor or Kodiak, AK. A key test will be determining whether and how much 

retraining is needed to apply the detector to new plants. 

The processing algorithms currently consist of a linked series of Python code routines and further 

application development is required for a general application that analyzes both detection and 

identification video streams. This solution would provide an estimate of the sorting efficiency 

and a count of salmon by species for all sorted salmon. Output can then be compared to the 

plant’s report for confirmation of events and potential errors. The results of these comparisons 

will be summarized in a peer-reviewed paper and presented to fisheries management and 

participants for their considerations of potential implementation. Key implementation questions 

include who runs the analysis software, how many deliveries need to be analyzed and how those 

are selected, and what are the performance criteria for use of plant report numbers. 

7   CREW ON DECK DETECTION AND ACTIVITY TRACKING 
 

Monitoring the location and activity of the crew on the deck of vessels is an important function 

in fisheries compliance reporting. Crew are surveilled not only to prevent invalid access to 

restricted areas but also to monitor unauthorized activity such as discarding fish. Surveillance 

video is recorded on board vessels as part of EM across all gear types, with manual video review 

being conducted to find and report on potential marine resource violations or to collect catch 

accounting data. This video review process can be a laborious task with days of footage required 

to be reviewed. EMI collaborated with staff at the NOAA NMFS West Coast Region (WCR) in 

2019 to develop computer vision algorithms to detect crew presence in an area of interest in the 

video frame and track crew movement to report on activity. Regions of interest include areas 

with high traffic and those near discard points such as hatches, scuppers, and rails. 

Computer vision human presence detection is a mature field (Zhang et al. 2019) allowing for 

rapid prototyping of the crew detection algorithm. The research method and development 

lifecycle for this application prototype is like the methods used in other EMI streams but no 

camera acquisition system was needed to be built or deployed (Fig. 54). Data was acquired 

through collaborative efforts, labeled and annotated, and algorithms were developed and trained 

with the labeled data 
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This detection algorithm has potential applications including but not limited to real-time 

compliance monitoring, real-time activity monitoring, real-time human presence/absence 

triggering. 

 
 
Figure 54. -- Schematic showing the research cycle for detecting crew activity on the deck of 

fishing vessels. 
 
 

7.1   Crew on Deck Training Data 
 

Training data was supplied by the WCR and consisted of surveillance video from multiple trawls 

vessels with multiple views and angles of the vessel deck visible in the videos, all from vessels 

under 100 ft. These videos were acquired from IP cameras. Additionally, it was determined that 

existing data collected as part of the data collection efforts for EMI Rail (Section 3) could also be 

utilized for crew detection algorithm training since crew members are standing at the rail in these 

images. These images were acquired via MV cameras from 2019 EMI Rail deployments aboard 

FV Kariel, FV Ocean Prowler and FV Predator. 

Since there is no single standard surveillance video input type, frame rate, or image resolution 

deployed in the field, this combination of both the IP camera and MV camera imagery allowed 



101 
 

for the developed algorithms to be flexible in its input requirements, supporting multiple input 

resolutions and framerates. 

 

7.2   Crew on Deck Annotation 
 

There was a total of 655,714 single frames of imagery with 33,050 bounding boxes labeled for 

training: 7,668 frames and 3,047 bounding box labels from WCR data from trawl decks, and 

648,046 frames and 30,003 bounding box labels from EMI Rail deployments. 

 
7.3   Crew on Deck Algorithm Development 

 

Algorithm development for the Crew on Deck stream consists of detecting the presence of a 

human within a specific region of interest, and once detected, determining what actions or 

activity that person is performing. 

For the detection of crew in a specified region of interest, the YOLO object detector model was 

implemented. YOLO (“You only look once”, Redmon et al. 2016 and 2018) is a convolutional 

neural network (CNN) for achieving object detection in real-time. The algorithm applies a single 

neural network to the full image, and then divides the image into regions and predicts bounding 

boxes (weighted by the predicted probabilities) for each region. The detector is fast and 

lightweight, which enables real-time processing and deployment on any system with a graphics 

processing unit (GPU) A region of interest (ROI) is defined before running the detector. If 

detections occur outside that ROI, then a trigger alert occurs. 

Tracking the activity of a human is more complex that simply detecting human presence. As a 

proof of concept, the OpenPose model was used to perform human pose estimation. OpenPose is 

a real-time multi-person system to jointly detect human body, hand, facial, and foot key-points 

on single images. Limbs and joints of the body are mapped allowing for activity and movement 

tracking of the crew on deck. While this proof of concept was promising, further research and 

development is needed. Actions, such as throwing a fish overboard or opening a hatch will need 

to be defined and modeled with specific training data needed for each action. 



102 
 

7.4   Crew on Deck Detector Review and Results 
 

To test the detection algorithm, 19,903 images from six camera angles were run through the 

algorithm. The human detector achieves 99% precision and 98% recall. Real-time processing 

was achievable using both high powered GPU machines and NVidia Jetson. Jetson is a low-

power system designed for accelerating machine learning applications. Figure 55 below depicts 

an example of a detection made by the detector. The output of the Crew on Deck detection 

algorithm is in the form of a csv file, and details the timestamp and the detection bounding box  

 
Figure 55. -- Image frame from an example of Crew on Deck detection. The light blue bounding 

box is the ROI with orange bounding box being the detection. 
 
 

7.5   Crew on Deck Haul Station Sensor Experiment  
 

With the promising results achieved from the Crew on Deck detection algorithm, an experiment 

was conducted to use this detector as a sensor trigger for the EMI Rail system (Section 3.1). In 

developing the EM Rail system to acquire the images for the Rail system data collection, a need 
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arose for a more efficient way of triggering the start and end of hauling activity. While the 

deployed sensors work to a certain degree, proximity and gear-based sensor results varied 

between each vessel and season and a standardized hardware strategy could not be achieved 

between vessels. The addition of a video detection trigger would allow for a standard hardware 

strategy. For this reason, the logic and output of the Crew on Deck ROI presence/absence 

detector was expanded for use as a sensor trigger. 

When the detection occurs in a ROI for a set amount of time, an alert can be triggered to indicate 

that the activity (hauling in this case) has started, and when no crew are present for a set amount 

of time, this can signal that the activity has ended. Camera imagery is already being recorded as 

part of EMI Rail system; however, this haul sensor would take a real-time video feed from a low 

powered IP camera as input independent from the EMI Rail stereo cameras. Further research and 

testing will determine the best implementation and integration strategy for this sensor. 

 

7.6   Crew on Deck Discussion, Operational Readiness and Summary 
 

The Crew on Deck detector has shown that achieving real-time human detections in areas of 

interest on board fishing vessels is achievable with relatively low development costs. While 

collaboration with WCR ended on the delivery of this proof-of-concept detector, there are still 

multiple research and operational opportunities available. The first of these being the 

incorporation of this detector into the video data review stream to monitor compliance. 

Secondary to this endeavor would be expanding upon the activity tracking capabilities to report 

on specific movements of the crew. Movements such as discard motions, setting and hauling 

operations, offload and backload operations can be defined and tracked. 

Integrating the detector into existing data review streams will require collaboration and input 

from data reviewers. The detector in its current form is a script-based application. It is not 

anticipated that further training of the algorithm will need to be conducted; however, this is 

dependent on the view and angle of input data. If views are vastly different from those of the 

training data, then retraining will need to be completed, along with labeling efforts. For direct 

integration into existing data review streams, the resulting csv file output types need to be 

defined and managed. A typical use case of the Crew on Deck detector would be to run existing 
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surveillance video and then human reviewing the actions of the crew based on the timestamp 

detections made. This would be a beneficial use of the detector for monitoring and reporting on 

specific restricted areas where it would not be common for a detection to occur. 

To achieve real-time video analysis on a live feed, collaboration will need to be conducted with 

system owners on how to integrate the application into those types of live environments. The 

findings of experiments conducted using the detector as a haul station sensor would provide 

insight into this type of real-time reporting. 

The benefits of researching crew motion activities would benefit the monitoring reporting 

currently being human reviewed. The ability to automatically track, interpret or predict the 

actions of the crew on deck allows for true automated crew monitoring; however, this will be a 

resource-heavy endeavor. It will require defining the types of actions that need to be monitored 

and will require training imagery on each action and variations of those actions. These images 

would, in turn, need to be labeled and trained. This data would either need to be mimicked and 

acquired for further collaboration. Currently, deck video is being reviewed as part of the fixed-

gear EM review process to track discard events. Combining this crew activity tracking with the 

fish detection and tracking for the rail would yield powerful automation for discard tracking. 

 

8   SEABIRD SPECIES IDENTIFICATION EXPERIMENT 
 

The purpose of this experiment is to automate identification of birds near and on vessels as well 

as birds captured on hook and line gears. The outcomes of this experiment can be applied to 

hook and line fishery, at the rail, deck strikes, and during setting procedures. 

Two experiments were conducted using the algorithms previously developed for use on trawl 

vessels (chute system) and on hook-and-line vessels (Rail system). These experiments focused 

on using the existing algorithms to identify species of incidentally caught seabirds. The goal of 

the first experiment was to identify bird species in a controlled environment (the multi-spectrum 

chute system), while the second experiment investigated identifying seabirds that were near the 

fishing gear or caught on the line (Rail system). 
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The multi-spectrum chute system consists of eight machine vision cameras each equipped with a 

band-pass filter to limit each individual camera to a specific light frequency. This includes the 

standard RGB, Infrared (IR), and UV light frequencies. Images were captured of 15 different 

species of seabirds and used to train the existing algorithms. A total of 1,837 images were used 

for training the system and 213 images were set aside for testing (Figure 56). Based on the test 

images, identification accuracy was 93% (Table 23). This includes 100% accuracy for commonly 

caught species including Black-footed Albatross, Northern Fulmar, and Laysan Albatross. 

Training and testing were conducted using images captured by the standard RGB cameras; 

images captured under other light frequencies have not been examined up to this point. The 

training data set is small and dominated by the species commonly encountered in the fishery. A 

larger variety and quantity of specimens would be needed to generate a more robust algorithm. 

 

 

 

Figure 56. -- Example seabird image captured using the multispectral camera chute 
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Table 23. -- Seabird species identification results (Controlled Environment) showing overall 
results in addition to species specific testing results. 

 
Summary results 

Mean per class accuracy 93% 
Number of training images 1837 

Number of testing images 213 
Higher classification Species Images 

tested 
Accuracy 

Ardenna Shearwater Unidentified 1 0% 

Ardenna Short-tailed shearwater (Puffinus 
tenuirostris) 6 100% 

Ardenna Sooty shearwater (Ardenna grisea) 2 50% 

Fulmar (Fulmarus) Northern fulmar (Fulmarus glacialis) 53 100% 
Gulls (Larus) Glaucous gull (Larus hyperboreus) 1 0% 

Gull Glaucous-winged gull (Larus 
glaucescens) 3 66.7 

Gull Gull unidentified 1 0% 
Gull Herring gull (Larus argentatus) 1 0% 
Gull Large immature gull 2 100% 

Kittiwakes (Rissa) Black-legged kittiwake (Rissa 
tridactyla) 2 50% 

Murre (Uria) Common murre (Uria aalge) 6 100% 
Murre Murre unidentified 3 66.70% 
Murre Thick-billed murre (Uria lomvia) 2 50% 
North Pacific albatross 
(Phoebastria) 

Black-footed albatross (Phoebastria 
nigripes) 53 100% 

North Pacific albatross Laysan albatross (Phoebastria 
immutabilis) 52 100% 

After successful completion of the pilot studies for identifying seabirds in the multispectral 

chute, a mock rail system was used at AFSC to simulate seabirds being caught on the longline 

and test the rail system’s ability to detect and classify seabird bycatch. The goal was to identify 

bird species using algorithms developed for stereo camera usage. Although birds are not caught 

in high abundance, when they are caught, it is essential to identify them to species. Since few 

imagery data existed for instances of seabirds being caught on the line, this scenario needed to be 

simulated and captured using the EM Innovation stereo Rail system. 
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For the simulation, 17 different species of birds were used to train and test the system. These 

included species of Albatross, Northern Fulmar, Shearwater species, and miscellaneous 

incidental seabirds that had been brought back from the field by observers. Of the total 538,056 

images recorded, 18,878 rectangular bounding boxes were created. The hook-and-line detector 

algorithm was trained with a subset of the dataset; the testing dataset consisted of 89 tracks and 

8,868 images and was held out of training data. The identification accuracy for this simulation 

was 93.25% overall with commonly caught species identified with near 100% accuracy (Table 

24). 

Moving forward, collecting more specimens will further improve the accuracy of this system. At 

that point, the bird species identification will be integrated into the standard stereo systems for 

identifying birds seen on the water near or on the gear. Results of these experiments were 

presented at the Ninth Meeting of the Seabird Bycatch Working Group (Fitzgerald, 2019).  

 

Figure 57. -- Example seabird image captured using the EMI Rail system at the AFSC. 
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Table 24. -- Seabird species identification results (Rail system) showing overall results in 
addition to species specific testing results. 

Summary results 
Mean per class accuracy 93.25% 

Number of training images 8868 
Number of testing tracks 89 

Species Tracks Accuracy 
Black-footed albatross (Phoebastria nigripes) 7 100% 

Black-legged kittiwake (Rissa tridactyla) 5 60% 

Cassin's auklet (Ptychoramphus aleuticus) 6 100 

Common murre (Uria aalge) 5 100% 

Crested auklet (Aethia cristatella) 10 90 

Emperor goose (Chen canagica) 2 100 

Fork-tailed storm petrel (Oceanodroma furcata) 4 100 

Gull unidentified 5 100% 

King eider (Somateria spectabilis) 5 100 

Large immature gull 4 100% 

Laysan albatross (Phoebastria immutabilis) 5 100% 

Leach's storm petrel (Oceanodroma leucorhoa) 4 100% 

Northern fulmar (Fulmarus glacialis) 7 100% 

Parakeet auklet (Aethia psittacula) 6 83% 

Shearwater unidentified 10 100% 

Tufted puffin (Fratercula cirrhata) 1 100% 

Whiskered auklet (Aethia pygmaea) 3 33% 
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